
Ghostscript Status

OpenPrinting summit April 2012

Michael Vrhel, Ph.D.

Artifex Software Inc.

San Rafael CA

Outline

Ghostscript overview

What is new and what is coming…

Color architecture

The Basics

Ghostscript is a document conversion and rendering engine.

Written in C ANSI 1989 standard (ANS X3.159-1989)

Essential component of the Linux printing pipeline.

Dual GPL/Proprietary licensed. Artifex owns the copyright.

Source and documentation available at www.ghostscript.com

http://www.ghostscript.com/

Graphical Overview

Ghostscript

Graphics Library

PDF 1.7 XPS
PostScript

Level 3
PCL5e/c with

GL/2 and RTL PCLXL

High level

Output drivers:

Pswrite PDFwrite

XPSwrite Custom

Printer drivers:

Inkjet

Laser

etc.

Raster output API:

TIFF

JPEG

CUPS

Devices

Understanding devices is a major key to understanding ghostscript.

Devices can have high-level functionality. e.g. pdfwrite can handle text, images,

patterns, shading, fills, strokes and transparency directly.

Devices may be set up to handle only certain high-level operations.

Graphics library has “default” operations. e.g. text

turns into bitmaps, images decomposed into rectangles.

In embedded environments, calls into hardware can be made.

Raster devices require the graphics library to do all the rendering.

Relevant Changes to GS since last meeting….

High speed halftoning (SIMD SSE) CMYK planar devices. (9.04)

Support for anti-aliasing when source contains transparency (9.04)

Re-enable of x11alpha as default device on Unix systems (9.04)

Object based color rendering (9.04)

Improved Black control in CMYK output (9.04)

Relevant Changes to GS since last meeting….

Source ICC Profile / Rendering intent override (9.04)

Git source control (9.04)

Experimental text extraction device released (9.04)

Now ships with littleCMS 2.3 (9.05)

Support for Proofing ICC Profiles (9.05)

Relevant Changes to GS since last meeting….

Support for Device Link ICC Profile (9.05)

Support for unmanaged color (9.05)

Embedding of ICC profiles in the TIFF, JPEG and PNG output devices (9.05)

Font set distributed with Ghostscript changed to the standard 35 Postscript-

compatible fonts distributed by URW (9.05)

Includes modified OpenJPEG sources for JPEG2000 decoding (9.05)

Upcoming Changes to GS (release 9.06*)

Support for Output Rendering Intent. (in trunk)

Support for custom named color replacement with DeviceN color spaces.

Support for different black point compensations.

Lazy initializations for default ICC profiles.

Upgrade of separation devices (speed improvements and no longer limited on

number of colors supported).

Ghostscript Color Flow

ICC Profile ICC Profile

Device

Colors

Device

Colors

Gray

RGB

CMYK

N-Channel

Named Color

Color

Management

Module (CMM)

Linked transform

from source to

device color

Ghostscript Color Architecture

• Easy to interface different CMM with Ghostscript.

• ALL color spaces defined in terms of ICC profiles.

• Linked transformations and internally generated profiles cached.

• Easily accessed manager for ICC profiles.

• Easy to specify default profiles for DeviceGray, DeviceRGB and DeviceCMYK.

• Devices communicate their ICC profiles and have their ICC profile set.

• Operates efficiently in a multithreaded environment.

• Handles named colors with ICC named color profile or proprietary format.

• ICC Color management of Device-N colors or customizable spot handling.

• Includes object type (e.g. image, graphic, text) and rendering intent into the

 computation of the linked transform

Ghostscript Color Architecture

• Ability to override document embedded ICC profiles with Ghostscript’s default

 ICC profiles.

• Easy to specify unique source ICC profiles to use with CMYK and RGB graphic,

 image and text objects.

• Easy to specify unique destination ICC profiles to use with graphic, image and

 text objects.

• Easy to specify different rendering intents (perceptual, colorimetric, saturation,

 absolute colorimetric) for graphic, image and text objects.

• Control to force gray source colors to black ink only for devices that support

 black ink (e.g. CMYK).

gsicc_init_buffer

gsicc_get_link

gsicc_release_link

gsicc_set_icc_directory

gsicc_set_profile

gsicc_init_device_profile

gsicc_set_gscs_profile

gsicc_get_gscs_profile

gsicc_profile_new

gsicc_get_profile_handle_buffer

Each thread could

have access to a
common ICC cache

or create its own

Graphics

Library
&

Interpreter

CMM

gscms_error

gscms_create

gscms_destroy

gscms_get_profile_handle_mem

gscms_get_profile_handle_file

gscms_release_profile

gscms_get_link

gscms_get_link_proof_devlink

gscms_get_name2device_link

gscms_release_link

gscms_transform_color_buffer

gscms_transform_color

gscms_transform_named_color

gscms_get_numberclrtnames

gscms_get_clrtname

gscms_get_input_channel_count

gscms_get_output_channel_count

gscms_get_profile_data_space

gsicc_set_device_profile

gsicc_set_device_profile_intent

gx_default_get_profile

Device

User profile directory

gsicc_set_icc_directory

gsicc_set_profile

gsicc_init_device_profile

TextProfile.icc

Device Profiles For

Various Rendering

Cases and Object

Types GraphicsProfile.icc

ImageProfile.icc

ICC Manager

Link Cache

Named Color Profile

DeviceN Profiles []

DefaultGray Profile

DefaultRGB Profile

DefaultCMYK Profile

Profile Cache

SoftMask Profiles

Source Profiles

(override)

default_gray.icc

default_rgb.icc

default_cmyk.icc

iccprofiles

lab.icc

sRGB.icc

s-gray.icc

ps_gray.icc

ps_rgb.icc

ps_cmyk.icc

gray_to_k.icc

ProofProfile.icc

DevicLinkProfile.icc

Link Cache

Link entries are reference counted.

Links are only released if we are at maximum number (or memory),

new request is made and a Ref Count is one.

Link Cache

Hash Code Ref Count Link Structure

gsicc_get_link(* pis, *input_colorspace, *output_colorspace, *rendering_params,
memory, include_softproof)

GRAPHICS LIBRARY

Compute hash of
input CS, output CS,
rendering params

Search cache for
match. If found
return link. If not
request new link

Hash Code

Hash Code

Hash Code

Ref Count

Ref Count

Ref Count

Ref Count Hash Code Link Structure

Link Structure

Link Structure

Link Structure

Named Colors

A look-up-table.

There is an ICC

profile format for

named colors.

In many applications,

a custom format

is used.

For some companies

this is their value

added.

Required Optional

Device Value

Device Value

Device Value

Device Value CIELAB

CIELAB

CIELAB

CIELAB

Pantone Uncoated Yellow

Toyo Red

Pantone Coated Green

Toyo Coated Blue

int gscms_transform_named_color(gsicc_link_t *icclink,

 float tint_value,

 const char *ColorName,

 gx_color_value device_values[]);

Missing from ICC profile is ability to use

tint information. We provide opportunity

for CMM to use. If it cannot, then alternate

tint transform is used.

Conversion of PS and PDF Color Spaces

• PS and PDF CIE color spaces are converted to ICC forms

 that the CMM can handle.

• PS mappings are all 1-way. Device to CIEXYZ or CIEXYZ to Device.

• Procedural mappings are sampled.

• Because of the multiple matrix operations and procedural mappings,

 some PS color spaces that do not include MLUTs will give rise to

 ICC profiles that do include MLUTs.

Example PS CIEABC

3x3

Matrix

3x3

Matrix

X

Y

Z

A

B

C

1f

2f

3f

1g

2g

3g

Profile Cache

• Ghostscript creates ICC profiles from PDF and PS CIE colorspace definitions

 (e.g. CalRGB, CIEABC, CIEDEFG)

• To avoid repeated creations, these profiles are cached based upon a hash

 code that is related to the resource ID.

• Cache is designed such that MRU item is at the top of the list.

• Profiles are only released if we are at maximum number (or memory),

 new request is made and a reference count is one.

Device N color spaces (PDF and PS)

• For Device N output, very simple to provide capability for N-color ICC profile.

• Many desire to have CM with CMYK and to pass additional spot colors unmolested.

• For DeviceN input color, XPS requires ICC profile. PDF and PS use an

 alternate tint transform.

• Architecture provides capability to define N-color ICC profile for DeviceN

 input colors to replace the alternate tint transform if desired.

Current Color Command Line Interface

Source Default Profiles

-sDefaultGrayProfile = my_gray_profile.icc

-sDefaultRGBProfile = my_rgb_profile.icc

-sDefaultCMYKProfile = my_cmyk_profile.icc

-sDeviceNProfile = my_devicen.icc

-sNamedProfile = my_namedcolor_profile.icc

Device Profile

-sOutputICCProfile = my_device_profile.icc

ICC Search Directory

-sICCProfilesDir = c:/my_iccprofiles/

Other Settings

-sProofProfile = my_proof_profile.icc

-sDeviceLinkProfile = my_link_profile.icc

-dRenderIntent = intent (0, 1, 2, 3)

-dOverrideICC = true/false

-dDeviceGrayToK = true/false

-dUseFastColor = true/false

Current Color Command Line Interface

Object Dependent Color Management

Object Dependent Color Management

Source Profiles

Source object dependent control achieved through the command line

Specification:

-sSourceObjectICC = filename

Contents of this file define what source profiles should be used with

what objects

Key Profile Intent

Graphic CMYK cmyk_src_graphic.icc 0

Image CMYK cmyk_src_image.icc 0

Text CMYK cmyk_src_text.icc 0

Graphic RGB rgb_source_graphic.icc 0

Image RGB rgb_source_image.icc 0

Text RGB rgb_source_text.icc 0

Object Dependent Color Management

Destination Profiles

Destination object dependent control achieved through the command line

-sTextICCProfile = my_device_text_profile.icc

-sGraphicICCProfile = my_device_graphic_profile.icc

-sImageICCProfile = my_device_image_profile.icc

-sTextIntent = intent

-sGraphicIntent = intent

-sImageIntent = intent

Example: Object Dependent CM

 Default Profiles

Source file includes RGB and CMYK

Images, graphics and text.

Example: Object Dependent CM

 Source Profiles Vary

In this case, different ICC profiles

were specified to be used with RGB

and CMYK graphic, image, and text

objects via the Ghostscript command line

with –sSourceObjectICC = filename.

Graphic CMYK cmyk_src_cyan.icc 0

Image CMYK cmyk_src_magenta.icc 0

Text CMYK cmyk_src_yellow.icc 0

Graphic RGB rgb_source_red.icc 0

Image RGB rgb_source_green.icc 0

Text RGB rgb_source_blue.icc 0

Example: Object Dependent CM

 Source CMYK rendering intent varies

In this case, a special source

ICC profile for CMYK objects was

specified via the Ghostscript

command line. The profile was deigned to

give radically different results in different

rendering intents.

Different rendering intents used for CMYK

graphics, images and text

Graphic CMYK cmyk_src_renderintent.icc 0

Image CMYK cmyk_src_renderintent.icc 1

Text CMYK cmyk_src_renderintent.icc 2

Example: Object Dependent CM

 Destination Profile varies

Different destination profiles

specified for different objects

-sGraphicICCProle = yellow_output.icc

-sImageICCProle = magenta_output.icc

-sTextICCProle = cyan_output.icc

Example: Object Dependent CM

 Destination Intent varies

In this case, a special source

ICC profile for CMYK objects was

specified via the Ghostscript

command line.

Different rendering intents used for

graphics, images and text

-sGraphicICCProle = cmyk_des_renderintent.icc

-sImageICCProle = cmyk_des_renderintent.icc

-sTextICCProle = cmyk_des_renderintent.icc

-dImageIntent = 0

-dGraphicIntent = 1

-dTextIntent = 2

-dOverrideRI

Proof and DeviceLink ICC Profile Useage

Two situations:

1) Can I print (or display) on device B what my output will look like if I were to

 print on device A?

 Use a proofing profile.

2) Can I map my output to a common standard space (e.g. Forgra39) and then

 perform a device link transform to my actual device values?

 Use a device-link profile.

Proof and DeviceLink ICC Profile Useage

Source

Colors

Source

ICC Profile

Proof

Profile

(inverse table)

Device

ICC Profile

Proof

Profile

(forward table)

CIELAB CIELAB

Proof

Device

Values Device

Values

Proof Profile Only Case:

Proof and DeviceLink ICC Profile Useage

Source

Colors

Source

ICC Profile

Device

ICC Profile

Device Link

ICC Profile

CIELAB

Device

Values
Device

Values

Device Link Profile Only Case:

Proof and DeviceLink ICC Profile Useage

Source

Colors

Source

ICC Profile

Proof

Profile

(inverse table)

Device

ICC Profile

Device Link

ICC Profile

Proof

Profile

(forward table)

CIELAB CIELAB

Proof

Device

Values

Device

Values
Device

Values

Both proofing and device-link profile.

Bug Tracking

http://bugs.ghostscript.com/

No Significant CUPs device issues

Issues with RGBW color space resolved

Transparency Pattern Color Spaces From

CarioGraphics. Speed issue resolved.

Poor PDF creation from Cario seems to have

also been resolved.

PDF Output Rendering Intent

OutputIntents array (Optional; PDF 1.4) An array of output intent

dictionaries describing the color characteristics of output devices on which

the document might be rendered (see “Output Intents” on page 970).

Discussions on OpenICC list about ghostscript NOT supporting the output

intent. (Bug 691952)

PDF Output Rendering Intent

<< /Type /OutputIntent

 /S /GTS_PDFX

 /OutputCondition (CGATS TR 001 (SWOP))

 /OutputConditionIdentifier (CGATS TR 001)

 /RegistryName (http://www.color.org)

 /DestOutputProfile 100 0 R

>>

Per PDF Specification:

DestOutputProfile (Required if OutputConditionIdentifier does not

specify a standard production condition; optional otherwise)

PDF Output Rendering Intent

That leaves us with three issues:

1) If multiple rendering intents are present, which one do we use?

2) If DestOutputProfile entry is not present, what should we do?

3) If output rendering intent ICC profile does not match the process

 color model of the output device how is the profile used?

PDF Output Rendering Intent

Solution is to introduce a new command line option:

-dUsePDFX3Profile = #

Where # defines which output intent to use in the order that they

occur in the document. If no number specified, first one encountered is used.

If no profile is present in the intent dictionary, a warning is displayed and

the rendering intent is ignored.

If the output intent ICC profile does not match the process color model of the

output device, then the output intent ICC profile is used as a proofing profile.

Planar Separation Devices

Most devices make use of a memory device to buffer the rendered page.

Until recently, Ghostscript was primarily set up for use with chunky memory

with the largest chunky pixel being 64 bits.

This presented a limitation for Separation devices with a large number

of spot colors.

Spot 1 Spot 2 Spot 3 Spot 4

64 bit word with CMYK + 4 spots

Planar Separation Devices

One approach to solve this was to use a compressed color encoding scheme.

Since certain combinations are more likely to occur.

For example a pure 100% spot with no other colorants is going to be

common in label printing.

In the presence of transparency and shadings with multiple colorants this

approach begins to break down.

Solution is to go to a planar memory memory model.

Advantage for laser print applications

tiffsep and psdcmyk devices will make use of this in 9.06 release

Planar Separation Devices

Spot N

Spot 1

Thank you for your attention!

michael.vrhel (at) artifex.com

