-- Module: GENERAL-TC

-- Editor: Tom Hastings

-- File: gentc.doc, .psr, .ps, .txt

-- Date: October 24, 1995

-- Version: 0.1

--

-- General Textual Conventions for use with a number of MIBs, that use

-- the host resources MIB (see RFC 1514).

--

-- This module declares general Textual Conventions

-- and other items which are to be imported into other MIB

-- modules. It is a companion to the General MIB module (file gen.txt).

--

 Text Attributes

There are three different kinds of text strings used in MIBs:

 1. Strings that are represented as Network Virtual Terminal (NVT)

 ASCII and are never localized. Such strings are specified in

 MIBs using the SMI textual convention: DisplayString. SMI

 specifies the size as a maximum of 255 octets as a comment,

 so all our MIBs must specify the size constraint as:

 (SIZE(0..255)) explicitly.

 2. Strings that are localized by the agent according to one or more

 locales specified by the management station. A locale

 specificaion consists of a language, a territory, and a coded

 character set. Such strings are specified in MIBs using the host

 resources MIB (RFC 1514) textual convention:

 InternationalDisplayString. RFC 1514 does not constrain

 InternationalDisplayString, so all our MIBs must specify the size

 constraint as: (SIZE(0..255)) explicitly.

 3. Strings that are represented in one or more coded character sets

 by the agent and that management stations can select which coded

 character set representation for the agent to return in a get by

 specifying the desired coded character set as an index. Such

 string are specified in MIBs using the (new) textual convention:

 CodeIndexedStringIndex that point to objects of type

 CodeIndexedString.

Objects of type InternationalDisplayString are used for description

strings that need to be localized, so that the user of the management

station can see the text in his/her locale (language, country, and coded

character set). Because these InternationalDisplayString objects are

for relatively static entities, the InternationDisplayString objects are

typically stored in message catalog files, according to the various

localizations supported. See RFC 1759 (Printer MIB) for a localization

method for description strings that applies only to description strings

in the Printer MIB.

On the other hand, CodeIndexedString objects are generated on the fly by

submitting clients, so that there is no opportunity for a server or SNMP

agent to use message catalogs. Examples of CodeIndexedString objects,

include user-name, job-name, job-comment, document-name, etc. Also end

users, system operators, and system administrators don't expect to see

such CodeIndexedString objects in their own language; rather these text

strings remain in the language of the originator. The server and SNMP

agent may perform transparent coded character set conversion on

CodeIndexedString objects, preserving the characters and only changing

the coding or providing meaningful fallback representation.

 Localization Group

The Localization Group provides objects to control the localization of

objects of the InternationalDisplayString type. The General MIB will

provide a single 16-bit genCurrentLocalizationIndex object that

management stations can set to the current localization that the agent

is to use for subsequent gets. The value of the current localization is

specified as an index value into the genLocalizationTable supplied by

the agent. Thus the genLocalizationTable indicates the localizations

that the agent supports.

Managment stations must include a get of the

genCurrentLocalizationIndex whenever they get objects of type

InternationalDisplayString, in order to detect when another management

station might have set the index to a different value. If the value of

genCurrentLocalizationIndex object was not as expected, the

management station shall wait a random time period and try again by

first re-setting the value of the genCurrentLocalizationIndex object

to the desired genLocalizationTable index (similar to the Ethernet

collision backoff algorithm).

Usually InternationalDisplayString objects are installed in the device

or server by means outside SNMP and this MIB. For example, one such

method is installing additional message catalog files into a special

file system directory on the server. In such cases, management stations

can not modify the values of InternationalDisplayString objects and the

agent implements them as read-only. However, some agents may wish to

allow management stations to alter the descriptions for supported

localizations by implementing the InternationalDisplayString objects as

read-write. However, such implementation shall allow the management

station to set the genCurrentLocalizationIndex object to any of the

supported localizations and shall keep distinct values for an

InternationDisplayString object for each localization so written. If a

management station writes a different value using the same localization,

the agent shall replace the old value with the new value. If an agent

is not able to keep distinct values for a particular

InternationDisplayString object, one for each supported localization,

the agent shall implement that InternationalDisplayString object as

read-only.

A higher end agent may allow management stations to install new

localizations in the agent by allowing the management station to add a

row to the genLocalizationTable, using the RowStatus mechanism.

In other words, the management station is able to effectively store a

new message catalog for a new localization by adding a row to the

genLocalizationTable and then writing each InternationalDisplayString

object with a value appropriate to the new localization. Agents not

capable of accepting new rows in the genLocalizationTable shall

implement the genLocalizationRowStatus as read-only.

The objects for controlling the localization of

InternationalDisplayString objects are put into the optional General

Current Localization Group and General Localization Group in the General

MIB so that they may be used with any MIB.

Note that this method for controlling localization in the agent is the

same method as is used in the Printer MIB (RFC 1759), except that this

method shall apply to all objects of type InternationDisplayString in

any legacy or future MIB, whereas the localization method in the Printer

MIB is only for certain specified objects in the printer MIB. Those

objects are of type OCTET STRING, so there is no conflict or overlap

between these two localization methods; they apply to disjoint sets of

objects.

 Code Indexed String Group

The Code Indexed String group provides objects to control the coded

representation of objects of type: CodeIndexedStringIndex. The value

of objects of type CodeIndexedStringIndex is the second index into a

single genCodeIndexedStringTable for the device (the first index

being hrDeviceIndex). The third index into this

genCodeIndexedStringTable is the coded character set enum that has

been registered with IANA (See RFC 1759 CodedCharSet textual-

convention). Thus the management station can request any supported

coded character set from the agent. The agent either has the string

stored or performs on-the-fly code conversion to the character sets that

the agent supports.

The management station must first request objects of type

CodeIndexedStringIndex and then make a second get specifying the

returned index and the coded character enum desired by the management

station (from among the sets supported by the SNMP agent). If a

management station requests a coded character set that the SNMP agent

doesn’t support, a V2 SNMP agent shall return a no such instance error.

A V1 SNMP agent shall return nosuch [object].

Example: The job-name object is of type CodeIndexedStringIndex. Say it

contains the index value 500. Lets also assume that the hrDeviceIndex

value is 10, so that the printer in question is the 10th device in the

host resources table. Finally, assume that the agent supports ASCII and

ISO Latin1, which have registered IANA enum values of 3 and 4,

respectively. The agent will appear to store job-name objects in the

genCodedString table that the management station accesses by the

following indexes:

 { ..., 10, 500, 3 }

 { ..., 10, 500, 4 }

The SNMP agent need not actually have all supported representations of a

CodeIndexedStringIndex object stored, but may code convert to the

requested coded character set on the fly in response to the Get

operation, depending on which of the coded character sets the management

station actually requested. Thus in the example above, the agent may

only store the job-name object value as ISO Latin 1 {..., 10, 500, 4 }

and convert to ASCII when a management station requests { ..., 10, 500,

3 }.

 NOTE TO MIB DESIGNERS: Since the CodeIndexedStringIndex type

 requires two gets, it should not be used except where

 there is no opportunity to use static message catalog files. Use

 InternationalDisplayString whenever possible, as long as the

 contention problem between multiple management stations for

 different sets is not a problem. The job/document monitors that

 query the job monitoring MIB are more likely to have collisions if

 they had to set the genCurrentLocalizationIndex object, since many

 end users, not just system operators and system administrators, will

 have the job/document monitors running.

In order to help a management station discover the coded character sets

supported for CodeIndexedString objects, the General MIB contains a

genCodedCharSetTable. The genCodedCharSetTable contains the enums

of the character sets registered with IANA that the SNMP agent supports,

either directly or with code conversion, along with a name and

description of each coded character set.

 Code Conversions of CodeIndexedString objects

Each CodeIndexedStringIndex object shall reference a string of at least

one of the following coded character sets:

 ASCII (X3.4-1968, NVT ASCII)

 ISO Latin 1 (ISO 8859-1)

 T61String (ITU/CCITT text communication which contains JIS 6226)

 ISO 10646 UCS-2 level 2 (Unicode is actually level 3 and has

 multiple representations for the same characters)

 Shift JIS

 EUC

 GB 2312 (PRC Chinese)

The first four coded character sets are required by ISO DPA, but we are

relaxing that requirement for the MIB, since DPA implementors are having

trouble meeting that requirement. Also DPA implementors want the

freedom to support other national sets, especially in China and Japan

where Unicode may not quite meet their needs.

Agents shall support ASCII. Since ISO Latin1 is the default coded

character set of Windows, agents shall support ISO Latin1. Support of

other ISO 8859 parts (5 other Latin sets, plus Latin-Cyrillic, Latin-

Greek, Latin-Hebrew, and Latin-Arabic) may also be supported with this

method.

Agents shall perform code conversions from a source coded character set

to a destination coded character set when the destination coded

character set contains the source coded character set as a subset. For

example, servers shall support code conversions from the following sets,

if they support both the source and destination coded character sets (as

indicated in the genCodedCharSet table:

 source coded character set destination coded character set

 ASCII (ANS X3.4) ISO Latin1 (ISO 8859-1)

 ASCII ISO Latin-Greek (ISO 8859-5?)

 ASCII Unicode (ISO 10646, UCS-2, level 3)

 ISO Latin1 Unicode

 ISO Latin-Greek Unicode

 ASCII JIS 6226 (Kanji which contains ASCII)

 JIS 6226 Shift JIS

 Shift JIS JIS 6226

Code conversion between Shift JIS and EUC (and back) is fairly trivial,

since both embody the Japanese national coded character set standard for

Kanji (and Latin and Cyrillic). Therefore, if an agent supports one,

the agent shall support code conversion to the other.

Code conversion between the character repertoire of ISO Latin 1 between

ISO Latin1 and Unicode representation is easy (add/remove a leading zero

octet). Code conversion from ASCII or Latin1 to JIS or Shift JIS is

straightforward. However, code conversion from Unicode to ASCII or

Latin1 when there are characters outside the repertoire of the

destination coded character set is harder. Alternatives for handling

the case when source coded character data contains characters that are

not representable in the destination coded character set:

 1. Represent the characters that the agent cannot represent in the

 requested coded character set using a closely related character,

 such as the unaccented latin letter, or some error condition such

 as * or ? for those characters that don't have obvious closely

 related characters.

 2. Don't return anything; make the management station request

 one of the other coded character representations (by

 providing a different CodedCharSet enum value as the third index

 into the genCodeIndexedString table.

 3. Convert Unicode into the two character mnemonic representation

 contained in RFC 1345 which has a two character ASCII

 representation for all characters of Unicode. Do the same for

 conversion of ISO Latin1 into ASCII. For example, RFC 1345

 represents LATIN SMALL LETTER A WITH ACUTE as a' and

 MICRO SIGN as My.

 4. RFC 1345 was designed for use by software and implementors and,

 therefore, avoids the use of so-called national-use characters

 (ACCENT GRAVE (`), CIRCUMFLEX ACCENT (^), TILDE (~). This

 fourth alternative is to use better two-character

 approximations than those in RFC 1345 that would be recognized by

 end-users without special training and would use these obvious

 national-use characters in such approximations.

To help a management station that wants to avoid getting too many

approximations or error characters, the management station can query the

agent to determine the coded character set that was used to submit the

job. The JobSubmittedCodedCharSet contains the character set enum

used by the submitting client for attributes of type:

CodeIndexedStringIndex. The management station can then request the

data using that character set (if the management client supports that

character set or perfers to perform its own coded character set

conversion, rather than relying on the agent to perform the coded

character set conversion).

While the ISO DPA standard provides for character coded attributes of a

maximum of 4095 octets, the MIB objects shall support 255-octet coded

character set data. This limit is because some transport mechanisms

(such as Novell), cannot handle more than 576 bytes in a packet.

Headers are about 30 bytes, leaving 546 bytes.

GENERAL-TC DEFINITIONS ::= BEGIN

IMPORTS

 MODULE-IDENTITY, Counter64, experimental

 FROM SNMPv2-SMI -- RFC 1442

 TEXTUAL-CONVENTION

 FROM SNMPv2-TC; -- RFC 1443

 -- Upon publication as RFC, delete this comment and the line following

 -- this comment and change the reference of { printmib 100 }

 -- (below) to { mib-2 X }.

 -- This will result in changing:

 -- 1 3 6 1 3 54 generalTC(100) to:

 -- 1 3 6 1 2 1 generalTC(X)

 -- This will make it easier to translate prototypes to

 -- the standard namespace because the lengths of the OID's won't

 -- change.

 printmib OBJECT IDENTIFIER ::= { experimental 54 }

generalTC MODULE-IDENTITY

 LAST-UPDATED "9510250000Z"

 ORGANIZATION "IETF/DMTF Printer Working Group"

 CONTACT-INFO

 " Thomas N. Hastings

 Xerox Corporation, MS ES-AE 242

 701 S. Aviation Blvd.

 El Segundo, CA 90245

 Phone: 1+ (310)333-6413

 FAX: 1+ (310)333-6342

 E-Mail: hastings@cp10.es.xerox.com"

 DESCRIPTION

 "File: gentc.doc, .psr, .ps, .txt

 Version: 0.1

 General Textual Conventions for use with other MIBs

 that use the host resources MIB (see RFC 1514)."

 ::= { printmib 100 }

--

-- General Textual Conventions in alphabetical order.

--

Cardinal16 ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation for non-negative integers.

 Used for indexes in small tables where 0 means not specified.

 It avoids use of the sign bit."

 SYNTAX INTEGER (0..32767) -- biggest int = 2**15-1

Cardinal32 ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation for non-negative integers.

 Used for indexes in large tables where 0 means not specified.

 Same size as ISO 10175 (avoids use of sign bit)."

 SYNTAX INTEGER (0..2147483647) -- biggest int = 2**31-1

Cardinal64 ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation for non-negative integers.

 Used for indexes in very large tables where 0 means not specified.

 Same size as ISO 10175 (avoids use of sign bit)."

 SYNTAX Counter64

 -- Should be INTEGER (0..9223372036854775807) 2**63-1

 -- but some ASN.1 compilers reject such a large limit

CodedLanguage ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "A two character language code from ISO 639.

 A blank string (two space characters) shall indicate that the

 territory is not defined.

 Examples EN, GB, CA, FR, DE."

 SYNTAX OCTET STRING (SIZE(2))

CodeIndexedStringIndex ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation of string data which the agent

 can provide in one or more character sets (but not further

 localized). Typically this representation is used because the

 string data is relatively dynamic, changing too rapidly for full

 localization; or because the data exists inherently in only one

 or a limited number of character sets and cannot meaningfully be

 further localized.

 The value is an index into a single global string table,

 genCodeIndexedStringTable. A subsidiary index into the

 genCodeIndexedStringTable is the IANA registered enum (see the

 CodedCharSet textual-convention in RFC 1759) for the

 coded character set desired by the management station (from

 among the coded character sets supported by the SNMP agent).

 A 0 index value shall indicate that there is no associated entry

 in the string table.

 32 bits are needed because Jobs can use up 10-12 code-indexed

 strings per job."

 SYNTAX Cardinal32

CodedTerritory ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "A two character country code from ISO 3166.

 A blank string (two space characters) shall indicate that the

 territory is not defined.

 Examples: US, FR, DE, ..."

 SYNTAX OCTET STRING (SIZE(2))

Gauge64 ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation for a non-negative integer, which may

 increase or decrease, but shall never exceed 2**63-1 in value.

 Same size as ISO 10175 (avoids use of sign bit)."

 SYNTAX Counter64

 -- Should be INTEGER (0..9223372036854775807) 2**63-1

 -- but some ASN.1 compilers reject such a large limit

Ordinal16 ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation for positive integers.

 Used for indexes in small tables where 0 is illegal.

 It avoids use of the sign bit.."

 SYNTAX INTEGER (1..32767) -- biggest int = 2**15-1

Ordinal32 ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation for positive integers.

 Same size as ISO 10175 (avoids use of sign bit)."

 SYNTAX INTEGER (1..2147483647) -- biggest int = 2**31-1

Ordinal64 ::= TEXTUAL-CONVENTION

 STATUS current

 DESCRIPTION

 "The representation for positive integers.

 Same size as ISO 10175 (avoids use of sign bit)."

 SYNTAX Counter64

 -- Should be INTEGER (1..9223372036854775807) 2**63-1

 -- but some ASN.1 compilers reject such a large limit

END

General textual-conventions for use with MIBs that use hr MIB

Hastings		[page � PAGE �8�]

