
OpenID vs OAuth 2.0
https://openid.net/connect/

OpenID is defined on top of the OAuth 2.0 protocol. It adds the following requirements to the
general OAuth 2.0 HTTP exchanges, like:

● Location of the server’s metadata:
○ /.well-known/openid-configuration instead of

/.well-known/oauth-authorization-server
○ deals with an optional path component differently (RFC8414-3 vs OpenID spec)

● Client must add openid to scope in Authentication/Authorization Request
● Token Endpoint returns additional token called id_token (along with access_token)

○ id_token is a JWT containing at least the following fields (see OpenID-token):
■ iss (issuer identifier) - Authorization Server URI
■ sub (subject identifier) - unique user ID
■ aud (audience) - must contain client_id
■ exp (expiration time)
■ iat (time when JWT was issued)

id_token may contain different claims about the user as it is specified in OpenID-claims (like
name, email, gender etc). Particular claims can be requested by adding additional values to the
scope parameter (OpenID-scope-claims). Claims can be also queried from UserInfo Endpoint
(OpenID-UserInfo) with obtained access_token.

In general, id_token is supposed to contain the user’s identity while access_token contains
scopes (access rights). Moreover, id_token is issued rather for a client and the client is
supposed to validate it (using the values iss, aud, exp).

Although, according to RFC7662-2.2, an access_token may also contain the following fields
(they can be queried from the server via Introspection Request or coded inside the token):

● iss
● sub
● aud
● exp
● iat
● client_id
● username

https://openid.net/connect/
https://tools.ietf.org/html/rfc8414#section-3
https://openid.net/specs/openid-connect-discovery-1_0.html#ProviderConfigurationRequest
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://www.rfc-editor.org/rfc/rfc7662#section-2.2

User identity in a printer
PWG_GetUserPrinterAttributes (section 4.1)
RFC8011-9.3
PWG_Job and Printer Extensions – Set 3 (section 5.1.6)
PWG_IPP System (section 7.1.7)

The Client can define the user identity by setting the following IPP attributes (in the Operation
Attributes group):

● requesting-user-name (name(MAX))
● requesting-user-uri (uri)
● requesting-user-vcard (1setOf text(MAX))

BUT, the printer cannot use these attributes and must instead retrieve the user’s identity from
the access_token. Otherwise, the Client would be able to easily impersonate other users. So,
I see two possible solutions here:

● access_token must contain user’s identity and the printer is able to get it in one of the
following ways:

○ access_token is JWT and user ID is inside, OR
○ user ID can be obtained via Token Introspection

● OpenID is used and the obtained token_id is sent to the printer (how?)
○ token_id must be decoded and verified by the printer - the printer must get

client_id from the access_token to do that

Problems
● We do not know if the printer needs user identity
● We do not know what kind of user info the printer needs

Proposed solution
● If a printer needs user identity, it must acquire it from obtained access_token
● User ID required by the printer is stored in access_token as a sub value
● OpenId is not required to have user ID included in the access_token

https://ftp.pwg.org/pub/pwg/ipp/registrations/reg-ippgupa-20171214.pdf
https://www.rfc-editor.org/rfc/rfc8011.html#section-9.3
http://ftp.pwg.org/pub/pwg/candidates/cs-ippjobprinterext3v10-20120727-5100.13.pdf
http://ftp.pwg.org/pub/pwg/ipp/wd/wd-ippsystem10-20171117.pdf

RAR-based protocol
https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml

This protocol is based on the “Example 2” described in the previous document I sent. I have
introduced the following changes:

● access_level is removed from the authorization_details

● endpoint access token contains additional fields: aud, iss, sub
● the IPP attribute oauth-groups can be skipped

1. Client sends Get-Printer-Attributes to the printer
The client queries the printer "https://my.printer.intranet/ipp/print" with Get-Printer-attributes. The
printer returns the following IPP attributes:

oauth-authorization-server-uri: “https://auth.server.intranet”
oauth-types-supported: ["https://pwg.org/ipp/oauth2/basic"]
oauth-groups: ["printersA", “printersB”] // groups of printers/users the printer belongs to

The last parameter (groups) is optional, if skipped then any OAuth2 session with the given
server can be used.

2. Client checks existing OAuth sessions with AS
The client chooses "https://pwg.org/ipp/oauth2/basic" as the type of authorization_details (the
printer does not support anything else so there are no other choices).

First, the client checks if it already has any access token from AS that matches the following
criteria:

● Issued by the AS “https://auth.server.intranet”.
● Has in groups any of the following: “printersA”, “printersB”.

(The second condition is not checked if the printer does not have the oauth-groups attribute.)

If the existing OAuth session matching these criteria is found, the Client reuses the existing
access token to get an endpoint access token via Token Exchange Request (go to step 4).
Otherwise, the Client initiates an authorization procedure with the server to obtain a new access
token (go to step 3).

3. Client goes through an authorization procedure and gets new access
token
The client sends to the AS an Authorization Request with the following parameter:

authorization_details = {

https://datatracker.ietf.org/doc/draft-ietf-oauth-rar/
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml
https://my.printer.intranet/ipp/print
https://auth.server.intranet
https://pwg.org/ipp/oauth2/basic
https://pwg.org/ipp/oauth2/basic
https://auth.server.intranet

"type": "https://pwg.org/ipp/oauth2/basic",
"groups": ["printersA", “printersB”],

}

The parameter groups is skipped if the printer does not have the oauth-groups attribute. After
completing the authorization procedure the client sends Token Request and receives a
response with the following parameter:

authorization_details = {
"type": "https://pwg.org/ipp/oauth2/basic",
"groups": ["printersA"],

}

4. Client sends Token Exchange Request and gets a new endpoint access
token
The Client sends a Token Exchange Request with the current access token and a resource_id
equals "https://my.printer.intranet/ipp/print" (the printer’s URL must be verified by its certificate).
The AS returns an endpoint access token that must be used in communication with the printer.

5. The printer verifies the (endpoint) access token
The printer sends a Token Introspection Request with the endpoint access token OR decode the
token (if it is a JWT). The AS’s response or decoded content contains the following parameters:

authorization_details = {
"type": "https://pwg.org/ipp/oauth2/basic",
"groups": ["printersA"],

}
aud = https://my.printer.intranet/ipp/print
iss = https://auth.server.intranet
sub = user.id@as.email

The printer must verify authorization_details, aud and iss.

Other solution: code the user identity inside authorization_details (not only in sub)

https://pwg.org/ipp/oauth2/basic
https://pwg.org/ipp/oauth2/basic
https://my.printer.intranet/ipp/print
https://pwg.org/ipp/oauth2/basic
https://my.printer.intranet/ipp/print
https://auth.server.intranet

