
PUBLIC - SHARED WITH PWG MEMBERS

`Page 1 of 23

OAuth-based authentication for IPP
Print Systems
Document version: 2.00

Design proposed by Google - Chrome OS team

Objective
This document proposes a standard OAuth-based authentication procedure for print systems
based on the IPP protocol. The approach proposed here was inspired by the OAuth
authentication procedure, described in PWG 5199.10-2019 (see 4.6), and is compatible with the
OAuth 2.0 standard. The original procedure proposed in the aforementioned document was
modified to address security issues. The goal is to create a well-defined, secure and
easy-to-implement authentication interface between print management systems and their
clients.

Introduction

Base definitions
The diagram below presents a simplified model of the described system:

https://ftp.pwg.org/pub/pwg/informational/bp-ippauth10-20190816-5199.10.pdf

PUBLIC - SHARED WITH PWG MEMBERS

`Page 2 of 23

IPP Client - a piece of software running on a device controlled by the user. An IPP Client tries to
establish communication with a printer (IPP Endpoint) through the IPP protocol to submit a print
job. IPP Client may be a part of the operating system, a standalone application, or a library that
can communicate directly with a given IPP Endpoint. An IPP client is considered to be a public
OAuth Client, while IPP Endpoint is considered a Resource Server (see RFC6749-1.1 for a
description of general OAuth roles and RFC6749-2.1 for a definition of public OAuth client).

IPP Endpoint - a network location with which an IPP Client can establish the IPP communication
and send a print job to it; it may be a printer or an endpoint provided by a print server or other
IPP-based print system. In particular, it may be an Infrastructure Printer as defined in PWG
5100.18-2015.

Authorization Server - a server responsible for coordinating the OAuth authorization process. It
controls access to an IPP Endpoint.

Authorization Zone - a set of all IPP Endpoints controlled by the same Authorization Server.
AuthorizationServerURI (an URL of the Authorization Server) can be considered as a unique
identifier of the Authorization Zone.

The scope of this document
This document describes an OAuth-based authentication framework for print management
systems. The goal is to standardize the way of controlling access to IPP Endpoint by IPP
Clients. The proposed solution does not impose any restrictions on the architecture of the
Authorization Zone. Print management system may be a single Authorization Zone, or it may
consist of many Authorization Zones. The document also does not specify how IPP Clients
acquire information about available IPP Endpoints. We assume here that IPPEndpointURLs of
available IPP Endpoints may be obtained by an IPP Client in any of the following ways - they may
be:

● queried from a print server specified by the user or provided by the administrator
● discovered on the local network with mDNS protocol
● specified directly by the user or provided by the administrator.

The security of the communication between IPP Clients and Authorization Servers or IPP
Endpoints is based on TLS. In all cases described in this document, an IPP Client uses https
protocol to communicate with the other actors. IPP Clients must always verify the SSL
certificate of an Authorization Server and IPP Endpoints before sending any requests to them.

Variables used in the document
IPPEndpointURI - URL of IPP Endpoint.

IPPEndpointSSLFingerprint - a fingerprint of the IPP Endpoint SSL certificate.

https://tools.ietf.org/html/rfc6749#section-1.1
https://tools.ietf.org/html/rfc6749#section-2.1
https://ftp.pwg.org/pub/pwg/candidates/cs-ippinfra10-20150619-5100.18.pdf
https://ftp.pwg.org/pub/pwg/candidates/cs-ippinfra10-20150619-5100.18.pdf

PUBLIC - SHARED WITH PWG MEMBERS

`Page 3 of 23

AuthorizationServerURI - URL of the Authorization Server.

RegistrationEndpointURI, AuthorizationEndpointURI, TokenEndpointURI, RevocationEndpointURI
- URL provided by the Authorization Server and used as target locations of the corresponding
HTTP requests, defined later in this document (HTTP exchanges). They all must use the same
SSL certificate as the Authorization Server.

AccessToken - a sequence of bytes issued for an IPP Client after successful completion of the
OAuth authorization process. It is a secret of a single OAuth session.

RefreshToken - a sequence of bytes issued for the IPP Client after successful completion of the
OAuth authorization process (optional). It may be used for obtaining a new AccessToken in the
same OAuth session.

EndpointAccessTokens - a sequence of bytes issued for an IPP Client to communicate with a
particular IPP Endpoint. The IPP Client must have a valid AccessToken to obtain this token.

ClientID - a unique name assigned to the IPP Client by the Authorization Server.

Scope - see RFC6749-3.3.

Rationale

Existing OAuth authentication protocol for IPP
The OAuth authentication for the IPP system was proposed in section 4.6 of the following
document: PWG 5199.10-2019. This section describes the general communication schema
between an IPP Client and an IPP Endpoint (a printer). The standard use case can be
summarized by the following steps:

1. IPP Client wants to print to a given IPP Endpoint that requires the OAuth authorization

2. IPP Client queries the AuthorizationServerURI from the IPP Endpoint

3. IPP Client registers itself to the Authorization Server, completes the OAuth authorization
process, and obtains AccessToken

4. IPP Client sends a print job to the IPP Endpoint with the obtained AccessToken

5. IPP Endpoint verifies the AccessToken and prints the document

We will refer to this procedure as “the original protocol”.

https://tools.ietf.org/html/rfc6749#section-3.3
https://ftp.pwg.org/pub/pwg/informational/bp-ippauth10-20190816-5199.10.pdf

PUBLIC - SHARED WITH PWG MEMBERS

`Page 4 of 23

Security drawbacks of the original protocol
The aforementioned PWG document does not impose any restrictions on system configuration
or the way in which the IPP Client obtains information about available printers (IPP Endpoints).
However, these two aspects have a significant impact on the system security. Since there are no
restrictions imposed on IPPEndpointURIs, one can try to introduce a fake IPP Endpoint to the
system to intercept the AccessToken or contents of printed documents. A fake IPP Endpoint can
also redirect an IPP Client to a fake Authorization Server, which can be used to impersonate the
existing Authorization Zone.

To mitigate the risk of disclosing an AccessToken or a print job to an unauthorized node, an IPP
Client must verify that the target IPP Endpoint is a part of the Authorization Zone and use
different dedicated access tokens for every IPP Endpoint. To enable this kind of verification we
propose here to extend the original protocol by Token Exchange request defined in RFC8693.
This request must be used by the IPP Client to obtain dedicated EndpointAccessTokens for each
accessed IPP Endpoint. It allows to implement the following security mechanisms:

● Authorization Server may issue different EndpointAccessTokens for different
IPPEndpointURIs. It would prevent reusing the token by other entities.

● During the Token Exchange, the Authorization Server may check if the given
IPPEndpointURI belongs to the Authorization Zone.

The Authorization Server must use one of these approaches or combination of both to make
sure that the Authorization Zone cannot be compromised by token leaking.

IPP Endpoints may have different trust levels. The trust level depends on the type and origin of
IPPEndpointURI. IPP Endpoints detected automatically with mDNS/zeroconf protocol impose
additional risk over these provided by print servers or preconfigured by the system
administrator.

Example: Bob is a bored programmer. One day, he noticed a new printer in his office. The printer
announces itself through mDNS as “SuperPrinter 999x”. Bob quickly implements a fake IPP
printer on his workstation that announces itself through mDNS as “ SuperPrinter 999x” (with a
space as a first character). Confused co-workers submit their print jobs to Bob’s workstation.
Bob’s fake IPP printer dumps all incoming printing jobs to a hard drive and resends them to the
real printer “SuperPrinter 999x”. This new printer works perfectly and no one noticed any
changes. Bob entertains himself at work by reading documents printed by his boss.

Another precaution must be taken to prevent redirection of the IPP Client to a fake Authorization
Server. The IPP Client cannot trust every AuthorizationServerURI queried from an unauthorized
IPP Endpoint. This issue may be solved by restricting the allowed AuthorizationServerURI to a
predefined trusted list stored in the IPP Client. New AuthorizationServerURIs may be added to
this list by a user’s request, e.g., each time an IPP Client obtains from an IPP Endpoint an
unknown AuthorizationServerURI, the user is asked if a given Authorization Server can be

https://tools.ietf.org/html/rfc8693

PUBLIC - SHARED WITH PWG MEMBERS

`Page 5 of 23

trusted. This way the trusted list can be extended with new AuthorizationServerURIs under the
user’s control.

Security of connections opened by IPP Client
According to OAuth 2 specification, all communication between the IPP Client and the
Authorization Server must be secured by TLS (i.e., over https). The security of the connection
between an IPP Client and an Authorization Server is straightforward: the IPP Client simply
verifies a certificate of the Authorization Server. These following two requirements must be met
in all cases:

● AuthorizationServerURI is a global and static address (e.g., FQDN)
● Authorization Server has a valid SSL certificate

“Global” here does not mean that it must be a public address. It may be a server that is
accessible only from an internal network (intranet). As a “global” address we can assume here
an address that is resolvable from all locations where at least one IPP Endpoint from the
Authorization Zone is resolvable.

Problems arise when we try to describe properties of an IPP Endpoint. To get some insight let’s
consider two extreme cases of an IPP Endpoint setup:

1. Cloud printing service. The service provides infrastructure printers as IPP Endpoints and
works as a proxy between real Printers and User Devices. In this scenario, an IPP Client
connects to the IPP Endpoint in the same way as to the Authorization Server. An IPP
Endpoint has a unique and static URL with the same visibility as AuthorizationServerURI.

2. A printer visible only in a local network (e.g. mDNS/zeroconf printer). In this case, the IPP
Endpoint has a local address that is resolvable only in a particular location (e.g., only
from a particular wifi network). As a result, its IPPEndpointURI may be non-unique in the
Authorization Zone, and the Authorization Server may not be able to open connections to
the IPP Endpoint.

In the second case, we need additional information to verify the identity of the IPP Endpoint.

Proposed modification of the original protocol
The goal of the proposed modification is to solve the security issues signaled in the previous
sections and, at the same time, allow support for various types of IPP Endpoints. The final
version of the use case from the original protocol may look as follows:

1. IPP Client wants to print to a given IPP Endpoint that requires OAuth authorization

2. IPP Client queries AuthorizationServerURI from the IPP Endpoint

PUBLIC - SHARED WITH PWG MEMBERS

`Page 6 of 23

Here, the IPP Client also validates the certificate of the IPP Endpoint. The IPP Client
must not proceed if the certificate cannot be validated.

3. IPP Client registers itself to the Authorization Server (if not registered), completes
through the authorization process and obtains AccessToken

The IPP Client must have the Authorization Server on its trusted list, and it must verify
the server's certificate.

4. IPP Client sends to the Authorization Server the Token Exchange request to obtain
EndpointAccessToken for given IPPEndpointURI. IPPEndpointSSLFingerprint is added to
the IPPEndpointURI as the last query parameter. The Authorization Server may use this
additional information to verify the identity of printers with non-unique addresses.

5. IPP Client sends a print job to the IPP Endpoint with the obtained EndpointAccessToken

6. IPP Endpoint verifies the EndpointAccessToken and prints the document

The communication between an IPP Endpoint and its Authorization Server is not within
the scope of this document. However, we can assume that any IPP Endpoint can open a
secure connection to the Authorization Server in the same way as an IPP Client.

Proposed protocol

General communication scheme
The diagram below presents the main actors and communication between them. Detailed
description of requests labeled with capital letters are included in the section HTTP exchanges.
Labels next to arrows pointing back to the IPP Client refer to values passed in successful
responses.

PUBLIC - SHARED WITH PWG MEMBERS

`Page 7 of 23

+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+ +~~~~~~~~~~~~~~~~~~~~~~+
User Device		Authorization Zone								
+---------------+		+-----------------+								
	IPP Client		(A) Metadata Request							
		--->	Authorization							
		<---	Server Metadata							
			RegistrationEndpointURI							
			AuthorizationEndpointURI	+-----------------+						
			TokenEndpointURI							
			RevocationEndpointURI							
				+-----------------+						
			(B) Registration Request							
		--->	Registration							
		<---	Endpoint							
			ClientID							
				+-----------------+						
	+----------+	+----------+	(C) Authorization	+-----------------+						
							Request			
		Redirect		--->	Internet	------------------------------->	Authorization			
		Endpoint	<------	Browser	<-------------------------------	Endpoint				
							AuthorizationCode			
	+----------+	+----------+		+-----------------+						
			(D) First Token Request	+-----------------+						
			(E) Next Token Request							
		--->								
		<---								
			AccessToken							
			RefreshToken							
					Token					
					Endpoint					
			(F) Token Exchange Req.							
		--->								
		<---								
			EndpointAccessToken							
				+-----------------+						
			(G) IPP Request with	+-----------------+						
			Access Token							
		--->	IPP Endpoint							
		<---								
			IPP Response	+-----------------+						
				+-----------------+						
			(H) Revocation Request							
		--->	Revocation							
		<---	Endpoint							
				+-----------------+						
+---------------+										
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~+ +~~~~~~~~~~~~~~~~~~~~~~+

Expected behavior of IPP Client
The security of the whole ecosystem is anchored in Authorization Servers. All
AuthorizationServerURIs must come from trusted sources and the whole communication with
them must require TLS. Each Authorization Server represents a single Authorization Zone. An
IPP Client must keep track of a set of Authorization Servers it is registered to.

PUBLIC - SHARED WITH PWG MEMBERS

`Page 8 of 23

The IPP Client may assume that a new IPP Endpoint does not need OAuth authorization (see
IPP Request Without Access Token) when communicating for the first time. However, in case of
an error response indicating the necessity of OAuth authorization, the IPP Client should query
the IPP Endpoint with Get-Printer-Attributes request to obtain AuthorizationServerURI stored in
the attribute “oauth-authorization-server-uri” and Scope stored in the attribute
“oauth-authorization-scope”.

If an IPP Client is not registered to the Authorization Zone represented by a given
AuthorizationServerURI, it must go through the Registration Procedure, described below, and
store all obtained metadata that are needed for authorization. IPP Client can register only to
Authorization Zones represented by AuthorizationServerURI included in its trusted list. If a given
AuthorizationServerURI is not on the trusted list, the user can be asked to add it to the list.

IPP Client holds two types of OAuth sessions:

1. Sessions created with (C) Authorization Request and (D) First Token Request are used
for communication with the Authorization Servers. They are based on AccessToken.

2. Sessions created with (F) Token Exchange Request. In this request the AccessToken is
exchanged for EndpointAccessToken that is used in direct communication with an IPP
Endpoint. These sessions are created separately for each IPP Endpoint.

All information about current OAuth sessions opened by an IPP Client must be held in volatile
memory and cannot be saved to any permanent storage (to protect AccessToken and
RefreshToken, see RFC6749-2.1 for security of OAuth public client). During runtime, IPP Client
must keep track of all currently open OAuth sessions. OAuth sessions of the first type are
unambiguously identified by AuthorizationServerURI while the sessions of the second type are
identified by an unique pair (AuthorizationServerURI, IPPEndpointURI). Sessions contain the
following information:

● AccessToken or EndpointAccessToken
● Expiration timestamp for AccessToken/EndpointAccessToken
● RefreshToken (if available)
● Scope (the value used in the (C) Authorization Request (RFC6749-4.1))

When an IPP Client tries to send a request to a printer assigned to some
AuthorizationServerURI, it must first check the list of current OAuth sessions and reuse an
existing OAuth session when possible. If there is no session for a given pair
(AuthorizationServerURI, IPPEndpointURI) or reusing it is not possible, the IPP Client must
search for a session indexed by AuthorizationServerURI and use (F) Token Exchange Request to
create a missing session. If there is no OAuth session for the AuthorizationServerURI or reusing
of the existing session is not possible, the IPP Client must perform the Authorization Procedure
described below to open a new OAuth session.

https://tools.ietf.org/html/rfc6749#section-2.1

PUBLIC - SHARED WITH PWG MEMBERS

`Page 9 of 23

Registration Procedure

An IPP Client executes this procedure to register itself in the new Authorization Zone with a
given AuthorizationServerURI and to acquire values of required variables:
AuthorizationEndpointURI, TokenEndpointURI, RevocationEndpointURI (optional), and ClientID.
The procedure consists of two steps:

1. (A) Metadata Request (RFC8414)
2. (B) Registration Request (RFC7591)

Both of these steps are described in the HTTP exchanges section.

Authorization Procedure

The goal of this procedure is to obtain a valid AccessToken for the Authorization Zone with a
given AuthorizationServerURI. An IPP Client must be already registered with the Authorization
Zone and know the values of the following variables associated with AuthorizationServerURI:
AuthorizationEndpointURI, TokenEndpointURI, and ClientID (they are obtained in the Registration
Procedure described above).

If an IPP Client does not have a corresponding RefreshToken, it must execute these two steps:

1. (C) Authorization Request (RFC6749-4.1)
2. (D) First Token Request

If the IPP Client already has a RefreshToken assigned to a given AuthorizationServerURI, it must
try to use it to obtain a new value for an expired AccessToken instead. This step is described in
the following subsection:

● (E) Next Token Request

For communication with an IPP Endpoint, the EndpointAccessToken must be obtained with the
use of the request from:

● (F) Token Exchange Request (RFC8693).

All these steps mentioned above are described in the HTTP exchanges section.

Revocation Procedure

When a user session is being closed, all stored AccessTokens, EndpointAccessTokens and
RefreshTokens must be automatically deleted on the IPP Client side (they are supposed to be in
volatile memory anyway). The session data on the server side can be deleted by sending a
revocation request (see (H) Revocation Request (RFC7009)). If the AuthorizationServer supports
a revocation request, the IPP Client should use it when the OAuth session with the Authorization

https://tools.ietf.org/html/rfc8414
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc6749#section-4.1

PUBLIC - SHARED WITH PWG MEMBERS

`Page 10 of 23

Zone is not needed any more. It happens when any of the following occurs:

● The IPP Client is shutting down
● AccessToken expires and there is no RefreshToken
● User logged out/closed the session with Authorization Zone (if IPP Client implements

this feature)
● The IPP Client may choose to close the session due to inactivity

(H) Revocation Request (RFC7009) may be called for RefreshTokens or AccessTokens (only if
the corresponding RefreshToken does not exist). It must automatically invalidate all related
EndpointAccessTokens.

Expected behavior of IPP Endpoint
If an IPP Endpoint requires the OAuth authorization, it must have the IPP attribute
“oauth-authorization-server-uri” in the Printer Description set to AuthorizationServerURI. IPP
Endpoints without this attribute do not require OAuth 2.0 authentication, and they do not belong
to any Authorization Zone. Every IPP Endpoint can belong to at most one Authorization Zone, so
the attribute “oauth-authorization-server-uri" can have only a single value. If the attribute
“oauth-authorization-scope” is present its value should be used as Scope. All IPP Endpoints
belonging to the same Authorization Zone should have the same value of the attribute
“oauth-authorization-server-uri".

The other IPP attributes that must be set appropriately are printer-uri-supported
(RFC8011-5.4.1), uri-authentication-supported (RFC8011-5.4.2) and uri-security-supported
(RFC8011-5.4.3). The first attribute must contain IPPEndpointURI, the second one the value
"oauth" and the third one the value “tls”. If supported by the IPP Endpoint, the IPP Client should
use the printer-xri-supported (RFC3380-6.6) attribute instead of these three attributes.

The IPP Endpoint must not require authorization for the IPP request Get-Printer-Attributes. In the
case of a missing EndpointAccessToken in the HTTP header in an incoming IPP request, the IPP
Endpoint must behave as defined in the subsection IPP Request Without Access Token. When
the EndpointAccessToken is present in the request, the IPP Endpoint must follow instructions
from (G) IPP Request With Access Token.

HTTP exchanges
These rules must be followed by all HTTP exchanges defined in this section:

● All HTTP requests described in this section must use the https protocol. The only
exception is RedirectURL that does not require encryption and the HTTP protocol.

● All communication is initiated by an IPP Client.
● All URL with parameters must be built according to rules described in RFC6749-B and

conform to “application/x-www-form-urlencoded” format described in

https://tools.ietf.org/html/rfc8011#section-5.4.1
https://tools.ietf.org/html/rfc8011#section-5.4.2
https://tools.ietf.org/html/rfc8011#section-5.4.3
https://tools.ietf.org/html/rfc3380#section-6.6
https://tools.ietf.org/html/rfc6749#appendix-B

PUBLIC - SHARED WITH PWG MEMBERS

`Page 11 of 23

https://www.w3.org/TR/html401/interact/forms.html#h-17.13.4. The same holds for all
payloads with content of type “application/x-www-form-urlencoded”.

● Values described as ASCII strings must be within the following set: 0x20, 0x21,
0x23-0x5B, 0x5D-0x7E (all printable characters without ‘“‘ and ‘\’).

The following table summarizes all OAuth-related exchanges defined in this section:

HTTP
method

Content in
request

Content in
successful
response

Content in error
response

IPP Request Without
Access Token

POST IPP IPP Header: param
“WWW-Authenti

cate: Bearer”
with parameters

(G) IPP Request With
Access Token (RFC6750)

(A) Metadata Request
(RFC8414)

GET none Payload: JSON Payload: JSON

(B) Registration Request
(RFC7591)

POST Payload: JSON Payload: JSON Payload: JSON

(C) Authorization
Request (RFC6749-4.1)

GET URL
parameters

URL parameters
in RedirectURL

URL parameters
in RedirectURL

(D) First Token Request
(RFC6749-5)

POST Payload:
x-www-form-ur

lencoded

Payload: JSON Payload: JSON

(E) Next Token Request
(RFC6749-6)

POST Payload:
x-www-form-ur

lencoded

Payload: JSON Payload: JSON

(F) Token Exchange
Request (RFC8693)

POST Payload:
x-www-form-ur

lencoded

Payload: JSON Payload: JSON

(H) Revocation Request
(RFC7009)

POST Payload:
x-www-form-ur

lencoded

none Payload: JSON

https://www.w3.org/TR/html401/interact/forms.html#h-17.13.4

PUBLIC - SHARED WITH PWG MEMBERS

`Page 12 of 23

IPP Request Without Access Token

HTTP request

Type: POST

Header parameters:

● Content-Type: application/ipp

Payload: IPP request.

HTTP successful response

Status: 200 Ok

Header parameters:

● Content-Type: application/ipp

Payload: IPP response.

HTTP error response when Access Token is required (RFC6750-3)

Status: 401 Unauthorized

Header parameters:

● WWW-Authenticate: “Bearer” with the following parameters:
○ realm - required, user friendly name of the printing system
○ scope - optional, if set then the IPP Client must use it in Authorization Procedure

(A) Metadata Request (RFC8414)

Input: AuthorizationServerURI

Output: AuthorizationEndpointURI, TokenEndpointURI, RegistrationEndpointURI,
RevocationEndpointURI (optional)

HTTP request (RFC8414-3.1)

Type: GET

URL: The URL is constructed from AuthorizationServerURI by adding the prefix
“/.well-known/oauth-authorization-server” to the path component. See RFC8615 and RFC8414-3
for details.

Example: Let’s assume that AuthorizationServerURI=https://my.auth.server/aaa. In this case,
the metadata file is accessible as

https://tools.ietf.org/html/rfc6750#section-3
https://tools.ietf.org/html/rfc8414
https://tools.ietf.org/html/rfc8414#section-3.1
https://tools.ietf.org/html/rfc8615
https://tools.ietf.org/html/rfc8414#section-3

PUBLIC - SHARED WITH PWG MEMBERS

`Page 13 of 23

https://my.auth.server/.well-known/oauth-authorization-server/aaa.

HTTP successful response (RFC8414-3.2)

Status: 200 OK

Header parameters:

● Content-Type: application/json

Payload: The metadata is coded in JSON format as a single object. The following fields are
essential (see RFC8414-2 for full list):

● issuer - required, = AuthorizationServerURI
● authorization_endpoint - required, = AuthorizationEndpointURI
● token_endpoint - required, = TokenEndpointURI
● registration_endpoint - required, = RegistrationEndpointURI
● scopes_supported - optional, not used
● response_types_supported - required, must contain “code”
● response_modes_supported - optional, must contain “query” if specified
● grant_types_supported - optional, must contain “authorization_code” if specified
● token_endpoint_auth_methods_supported - required, must contain “none”
● revocation_endpoint - optional, = RevocationEndpointURI, if it is set then IPP Client must

use Revocation Procedure when the session is being closed
● revocation_endpoint_auth_methods_supported - required when revocation_endpoint is

present, must contain “none”
● code_challenge_methods_supported - required, must contain “S256”

HTTP error response

Not specified, use standard HTTP statuses.

(B) Registration Request (RFC7591)

Input: RegistrationEndpointURI, RedirectURL

Output: ClientID

HTTP request (RFC7591-3.1)

Type: POST

URL: RegistrationEndpointURI without parameters

Header parameters:

● Content-Type: application/json

https://tools.ietf.org/html/rfc8414#section-3.2
https://tools.ietf.org/html/rfc8414#section-2
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591#section-3.1

PUBLIC - SHARED WITH PWG MEMBERS

`Page 14 of 23

● Accept: application/json

Payload: A set of parameters is encoded in a single JSON object. The following parameters are
essential (see RFC7591-2 for full list):

● All parameters from RegistrationEndpointURI (these ones omitted in the URL)
● redirect_uris - required, = [RedirectURL, ...] (the first one is taken)
● token_endpoint_auth_method - required, an array, must contain “none”
● grant_types - optional, an array, must contain "authorization_code"
● response_types - optional, an array, must contain “code”
● client_name - optional, may be internationalized (RFC7591-2.2)
● scope - do not include it
● software_id - optional, the name (or ID) of the software (IPP Client)
● software_version - optional, the version of the software (IPP Client)
● software_statement - optional (RFC7591-2.3), JWT (RFC7519) signed with JWS

(RFC7515) using a symmetric key known by the Printer Management System (but not by
the IPP Client). The symmetric key must be dedicated to this IPP Client. JWT must
contain at least client_name, software_id, and software_version.

HTTP successful response (RFC7591-3.2.1)

Status: 201 Created

Header parameters:

● Content-Type: application/json
● Cache-Control: no-store
● Pragma: no-cache

Payload: The single JSON object with the following parameters:

● client_id - required, = ClientID
● client_id_issued_at - optional, time at which the client identifier was issued represented

as the number of seconds from 1970-01-01T00:00:00Z in UTC
● All fields assigned to the registered client on the server side. It must include all fields

specified in the request, and their values must be the same as these specified in the
request.

HTTP response for OAuth 2.0 error (RFC7591-3.2.2)

Status: 400 Bad Request

Header parameters:

● Content-Type: application/json
● Cache-Control: no-store

https://tools.ietf.org/html/rfc7591#section-2
https://tools.ietf.org/html/rfc7591#section-2.2
https://tools.ietf.org/html/rfc7591#section-2.3
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7591#section-3.2.1
https://tools.ietf.org/html/rfc7591#section-3.2.2

PUBLIC - SHARED WITH PWG MEMBERS

`Page 15 of 23

● Pragma: no-cache

Payload: A single JSON object with the following fields:

● error - required, single ASCII error code string, one of the following:
○ invalid_redirect_uri - The value of one or more redirection URIs is invalid.
○ invalid_client_metadata - The value of one of the client metadata fields is invalid

and the server has rejected this request.
○ invalid_software_statement - The software statement presented is invalid.
○ unapproved_software_statement - The software statement presented is not

approved for use by this authorization server.
● error_description - optional, human-readable ASCII text description of the error used for

debugging.

(C) Authorization Request (RFC6749-4.1)

Input: AuthorizationEndpointURI, ClientID, RedirectURL, Scope

Output: AuthorizationCode

This request is not sent directly from the IPP Client. Instead, the IPP Client opens an available
internet browser (called in OAuth 2.0 specification as “user agent”) and feeds it with the URL.
The internet browser sends an HTTP GET request to a given URL and allows the user to go
through the whole authorization process. If the access is granted, the flow is returned to the IPP
Client by sending to the Internet Browser the HTTP 302 Found response that is redirected to the
IPP Client. Possible implementations of this stage across different operating systems are
described in RFC8252-7.

First HTTP request from the internet browser (RFC6749-4.1.1)

Type: GET

URL: AuthorizationEndpointURI extended by adding the following parameters:

● response_type - required, = “code”
● response_mode - optional, if specified then = ”query”
● client_id - required, = ClientID
● redirect_uri - required, = RedirectURL
● scope - optional, = Scope (scopes defined in IPP Endpoint, set if Scope is specified)
● state - required, an opaque value used by the client to maintain state between the

request and callback
● code_challenge - required, created according to RFC7636-4 with the algorithm “S256”
● code_challenge_method - required, = ”S256” (RFC7636-4.3)

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc8252#section-7
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://tools.ietf.org/html/rfc7636#section-4
https://tools.ietf.org/html/rfc7636#section-4.3

PUBLIC - SHARED WITH PWG MEMBERS

`Page 16 of 23

Last HTTP response to the internet browser in case of success (RFC6749-4.1.2)

Status: 302 Found

Header parameters:

● Location: RedirectURL with the following parameters:
● code - required, = AuthorizationCode
● state - required, = the exact value received in the first HTTP request

Last HTTP response to the internet browser in case of error (RFC6749-4.1.2.1)

Status: 302 Found

Header parameters:

● Location: RedirectURL with the following parameters:
● error - required, a single ASCII error code from the following:

○ invalid_request - the request is missing a required parameter, includes an
invalid parameter value, includes a parameter more than once, or is
otherwise malformed.

○ unauthorized_client - the client is not authorized to request an
authorization code using this method.

○ access_denied - the resource owner or authorization server denied the
request.

○ unsupported_response_type - the authorization server does not support
obtaining an authorization code using this method.

○ invalid_scope - the requested scope is invalid, unknown, or malformed.
○ server_error - the authorization server encountered an unexpected

condition that prevented it from fulfilling the request. This error code is
needed because a 500 Internal Server Error HTTP status code cannot be
returned to the client via an HTTP redirect.

○ temporarily_unavailable - the authorization server is currently unable to
handle the request due to a temporary overloading or maintenance of the
server. This error code is needed because a 503 Service Unavailable
HTTP status code cannot be returned to the client via an HTTP redirect.

● error_description - optional, human-readable ASCII text providing additional
information, used to assist the client developer in understanding the error that
occurred.

● error_uri - optional, a URI identifying a human-readable web page with information
about the error, used to provide the client developer with additional information
about the error. It must be an ASCII string without a 0x20 character.

● state - required, = the exact value received in the first HTTP request.

https://tools.ietf.org/html/rfc6749#section-4.1.2
https://tools.ietf.org/html/rfc6749#section-4.1.2.1

PUBLIC - SHARED WITH PWG MEMBERS

`Page 17 of 23

(D) First Token Request (RFC6749-5)

Input: TokenEndpointURI, ClientID, RedirectURL, AuthorizationCode

Output: AccessToken, RefreshToken

HTTP request (RFC6749-4.1.3)

Type: POST

URL: TokenEndpointURI without parameters

Header parameters:

● Content-Type: application/x-www-form-urlencoded

Payload: A set of parameters saved as “application/x-www-form-urlencoded” and encoded in
“UTF-8”. It must contain the following parameters:

● All parameters from TokenEndpointURI
● grant_type - required, = ”authorization_code”
● code - required, = AuthorizationCode
● redirect_uri - required, = RedirectURL
● client_id - required, = ClientID
● code_verifier - required, =code verifier, see RFC7636-4.5

HTTP successful response (RFC6749-4.1.4)

Status: 200 Ok

Header parameters:

● Content-Type: application/json;charset=UTF-8
● Cache-Control: no-store
● Pragma: no-cache

Payload: The content is a JSON with the following values (RFC6749-5.1):

● access_token - required, = AccessToken
● token_type - required, = "bearer"
● expires_in - optional, the lifetime in seconds of the access token.
● refresh_token - optional, = RefreshToken
● scope - optional, not used

HTTP response for OAuth 2.0 error (RFC6749-5.2)

Status: 400 Bad Request

https://tools.ietf.org/html/rfc6749#section-5
https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc7636#section-4.5
https://tools.ietf.org/html/rfc6749#section-4.1.4
https://tools.ietf.org/html/rfc6749#section-5.1
https://tools.ietf.org/html/rfc6749#section-5.2

PUBLIC - SHARED WITH PWG MEMBERS

`Page 18 of 23

Header parameters:

● Content-Type: application/json;charset=UTF-8
● Cache-Control: no-store
● Pragma: no-cache

Payload: A single JSON object with the following fields:

● error - required, single ASCII error code string, one of the following:
○ invalid_request - The request is missing a required parameter. It includes an

unsupported parameter value (other than grant type), repeats a parameter,
includes multiple credentials, uses more than one mechanism for authenticating
the client, or is otherwise malformed.

○ invalid_client - Client authentication failed (e.g., unknown client, no client
authentication included, or unsupported authentication method).

○ invalid_grant - The provided authorization grant (e.g., authorization code,
resource owner credentials) or refresh token is invalid, expired, revoked, does not
match the redirection URI used in the authorization request, or was issued to
another client.

○ unauthorized_client - The authenticated client is not authorized to use this
authorization grant type.

○ unsupported_grant_type - The authorization grant type is not supported by the
authorization server.

○ invalid_scope - The requested scope is invalid, unknown, malformed, or exceeds
the scope granted by the resource owner.

● error_description - optional, human-readable ASCII text description of the error used for
debugging.

● error_uri - optional, a URI identifying a human-readable web page with information about
the error, used to provide the client developer with additional information about the error.
It must be an ASCII string without a 0x20 character.

(E) Next Token Request (RFC6749-6)

Input: TokenEndpointURI, RefreshToken

Output: AccessToken, RefreshToken

HTTP request

Type: POST

URL: TokenEndpointURI without parameters

Header parameters:

https://tools.ietf.org/html/rfc6749#section-6

PUBLIC - SHARED WITH PWG MEMBERS

`Page 19 of 23

● Content-Type: application/x-www-form-urlencoded

Payload: A set of parameters saved as “application/x-www-form-urlencoded” and encoded in
“UTF-8”. It must contain the following parameters:

● All parameters from TokenEndpointURI
● grant_type - required, = ”refresh_token”
● refresh_token - required, = RefreshToken
● scope - do not include it

HTTP response

Responses are the same as described in “(D) First Token Request”. The server may issue a new
RefreshToken, in which case the client must discard the old RefreshToken and replace it with a
new one.

(F) Token Exchange Request (RFC8693)

Input: TokenEndpointURI, AccessToken, IPPEndpointURI

Output: EndpointAccessToken

HTTP request (RFC8693-2.1)

Type: POST

URL: TokenEndpointURI without parameters

Header parameters:

● Content-Type: application/x-www-form-urlencoded

Payload: A set of parameters saved as “application/x-www-form-urlencoded” and encoded in
“UTF-8”. It must contain the following parameters:

● All parameters from TokenEndpointURI
● grant_type - required, = ”urn:ietf:params:oauth:grant-type:token-exchange”
● resource - required, = IPPEndpointURI with additional query parameter SSLFingerprint=

IPPEndpointSSLFingerprint
● scope - do not include it
● subject_token - required, = AccessToken
● subject_token_type - required, = “urn:ietf:params:oauth:token-type:access_token”

HTTP successful response (RFC8693-2.2)

Status: 200 Ok

https://tools.ietf.org/html/rfc8693
https://tools.ietf.org/html/rfc8693#section-2.1
https://tools.ietf.org/html/rfc8693#section-2.2

PUBLIC - SHARED WITH PWG MEMBERS

`Page 20 of 23

Header parameters:

● Content-Type: application/json
● Cache-Control: no-store
● Pragma: no-cache

Payload: The content is a JSON with the following values (RFC6749-5.1):

● access_token - required, = EndpointAccessToken
● issued_token_type - required, but not used, if unsure set it to

“urn:ietf:params:oauth:token-type:access_token”
● token_type - required, = "bearer"
● expires_in - optional, the lifetime in seconds of the access token.
● refresh_token - do not use it
● scope - do not use it

HTTP response for OAuth 2.0 error (RFC6749-5.2)

Status: 400 Bad Request

Header parameters:

● Content-Type: application/json
● Cache-Control: no-store
● Pragma: no-cache

Payload: A single JSON object with the following fields:

● error - required, single ASCII error code string, one of the following:
○ invalid_request - The request is missing a required parameter. It includes an

unsupported parameter value (other than grant type), repeats a parameter,
includes multiple credentials, uses more than one mechanism for authenticating
the client, or is otherwise malformed.

○ invalid_grant - The provided authorization grant (e.g., authorization code,
resource owner credentials) or refresh token is invalid, expired, revoked, does not
match the redirection URI used in the authorization request, or was issued to
another client.

○ unauthorized_client - The authenticated client is not authorized to use this
authorization grant type.

○ unsupported_grant_type - The authorization grant type is not supported by the
authorization server.

○ invalid_scope - The requested scope is invalid, unknown, malformed, or exceeds
the scope granted by the resource owner.

○ invalid_target - The URI passed in the resource parameter is unknown or
incorrect.

● error_description - optional, human-readable ASCII text description of the error used for

https://tools.ietf.org/html/rfc6749#section-5.1
https://tools.ietf.org/html/rfc6749#section-5.2

PUBLIC - SHARED WITH PWG MEMBERS

`Page 21 of 23

debugging.
● error_uri - optional, a URI identifying a human-readable web page with information about

the error, used to provide the client developer with additional information about the error.
It must be an ASCII string without a 0x20 character.

(G) IPP Request With Access Token (RFC6750)

Input: AccessToken

HTTP request (RFC6750-2.1)

Type: POST

Header parameters:

● Content-Type: application/ipp
● Authorization: Bearer AccessToken

Payload: IPP request.

HTTP successful response

Status: 200 Ok

Header parameters:

● Content-Type: application/ipp

Payload: IPP response.

HTTP error response (RFC6750-3)

Status: 400 Bad Request or 401 Unauthorized or 403 Forbidden

Header parameters:

● WWW-Authenticate: Bearer with the following parameters:
○ realm - required, user friendly name of the printing system
○ scope - optional, a required Scope value
○ error - optional, one of the following (RFC6750-3.1):

■ invalid_request - The request is missing a required parameter. It includes
an unsupported parameter or parameter value, repeats the same
parameter, uses more than one method for including an access token, or
is otherwise malformed. It may be returned only for the HTTP 400 (Bad
Request) status code.

■ invalid_token - The access token provided is expired, revoked, malformed,
or invalid for other reasons. It may be returned only for the HTTP 401

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750#section-2.1
https://tools.ietf.org/html/rfc6750#section-3
https://tools.ietf.org/html/rfc6750#section-3.1

PUBLIC - SHARED WITH PWG MEMBERS

`Page 22 of 23

(Unauthorized) status code. The client may request a new access token
and retry the protected resource request.

■ insufficient_scope - The request requires higher privileges than provided
by the access token. It may be returned only for the HTTP 403
(Forbidden) status code

○ error_description - optional
○ error_uri - optional

(H) Revocation Request (RFC7009)

Input: RevocationEndpointURI, RefreshToken or AccessToken

The exchange is considered successful when the server revoked a given token or when the
token is not known by the server. It is so, because the server does not have to store or track
expired tokens and revoking expired tokens cannot cause error response.

If the server responds with HTTP status code 503, the client must assume the token still exists
and may retry after a reasonable delay. The server may include a "Retry-After" header in the
response to indicate how long the service is expected to be unavailable to the requesting client.

HTTP request (RFC7009-2.1)

Type: POST

URL: RevocationEndpointURI without parameters

Header parameters:

● Content-Type: application/x-www-form-urlencoded

Payload: A set of the following parameters saved as “application/x-www-form-urlencoded”:

● All parameters from RevocationEndpointURI
● token - required, = RefreshToken if defined, otherwise AccessToken

HTTP successful response (RFC7009-2.2)

Status: 200 Ok

HTTP error response (RFC7009-2.2.1)

Status: 400 Bad Request

Header parameters:

● Content-Type: application/json;charset=UTF-8
● Cache-Control: no-store

https://tools.ietf.org/html/rfc7009
https://tools.ietf.org/html/rfc7009#section-2.1
https://tools.ietf.org/html/rfc7009#section-2.2
https://tools.ietf.org/html/rfc7009#section-2.2.1

PUBLIC - SHARED WITH PWG MEMBERS

`Page 23 of 23

● Pragma: no-cache

Payload: A single JSON object with the following fields:

● error - required, single ASCII error code string, one of the following:
○ unsupported_token_type - The authorization server does not support the

revocation of the presented token type. That is, the client tried to revoke an
access token on a server not supporting this feature.

Others

Querying the list of available IPP Endpoint from IPP System
The standardized API for accessing IPP Systems is defined in the document IPP System Service
v1.0. We are interested in the request Get-Printers described in the section 6.1.4. It allows the
IPP Client to obtain IPPEndpointURIs via the attributes printer-xri-supported. However, the
document does not mention the attribute oauth-authorization-server-uri. This probably means
that it may be or may be not present. In any case, its value must be queried directly from the IPP
Endpoint via the IPP request Get-Printer-Attribute.

The access to the IPP System is controlled in a similar way as an access to IPP Endpoints. The
client must first send an IPP request Get-System-Attributes to obtain the attribute
oauth-authorization-server-uri for the IPP System. After successful authorization, the client is
able to query the list of available printers with the request Get-Printers. This procedure is
proposed in the errata filed for the document IPP System Service v1.0 (it can be found at
https://www.pwg.org/dynamo/issues.php).

In general, IPP System endpoints can be treated in analogical way as IPP Endpoints.

http://ftp.pwg.org/pub/pwg/candidates/cs-ippsystem10-20191122-5100.22.pdf#page=70
http://ftp.pwg.org/pub/pwg/candidates/cs-ippsystem10-20191122-5100.22.pdf#page=70
http://ftp.pwg.org/pub/pwg/candidates/cs-ippsystem10-20191122-5100.22.pdf#page=70
https://www.pwg.org/dynamo/issues.php

