IPP System Service Discovery v1.0

Status: Initial

Abstract: This registration defines an IPP attribute and DNS-SD service type to support discovery of IPP System Services (PWG 5100.22).

This registration is available electronically at:

Copyright © 2020 The Printer Working Group. All rights reserved.

Title: IPP System Service Discovery v1.0

The material contained herein is not a license, either expressed or implied, to any IPR owned or controlled by any of the authors or developers of this material or the Printer Working Group. The material contained herein is provided on an “AS IS” basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and the Printer Working Group and its members hereby disclaim all warranties and conditions, either expressed, implied or statutory, including, but not limited to, any (if any) implied warranties that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.
Table of Contents

1. Introduction .. 4
2. Terminology ... 4
 2.1 Conformance Terminology ... 4
 2.2 Other Terminology .. 4
 2.3 Acronyms and Organizations .. 5
3. Requirements .. 5
 3.1 Rationale for Title of Document ... 5
 3.2 Use Cases .. 5
 3.3 Exceptions .. 5
 3.4 Out of Scope .. 6
 3.5 Design Requirements ... 6
4. First Specification Section .. 8
5. Conformance Requirements .. 10
6. Internationalization Considerations ... 10
7. Security Considerations .. 11
8. IANA Considerations .. 12
9. References ... 13
 9.1 Normative References ... 13
 9.2 Informative References .. 14
10. Authors' Addresses .. 14
11. Change History ... 15
 11.1 Month, DD, YYYY ... 15

List of Tables

Table 1 - An Example Table .. 4

Copyright © 2020 The Printer Working Group. All rights reserved.
1. Introduction

Provide an introduction for the document.

2. Terminology

2.1 Conformance Terminology

Capitalized terms, such as MUST, MUST NOT, RECOMMENDED, REQUIRED, SHOULD, SHOULD NOT, MAY, and OPTIONAL, have special meaning relating to conformance as defined in Key words for use in RFCs to Indicate Requirement Levels [BCP14]. The term CONDITIONALLY REQUIRED is additionally defined for a conformance requirement that applies when a specified condition is true.

The term DEPRECATED is used for previously defined and approved protocol elements that SHOULD NOT be used or implemented. The term OBSOLETE is used for previously defined and approved protocol elements that MUST NOT be used or implemented.

2.2 Printing Terminology

Normative definitions and semantics of printing terms are imported from IETF Printer MIB v2 [RFC3805], IETF Finisher MIB [RFC3806], and IETF Internet Printing Protocol/1.1 [STD92].

Document: An object created and managed by a Printer that contains the description, processing, and status information. A Document object may have attached data and is bound to a single Job.

Job: An object created and managed by a Printer that contains description, processing, and status information. The Job also contains zero or more Document objects.

Logical Device: a print server, software service, or gateway that processes jobs and either forwards or stores the processed job or uses one or more Physical Devices to render output.

Output Device: a single Logical or Physical Device

Physical Device: a hardware implementation of a endpoint device, e.g., a marking engine, a fax modem, etc.

2.3 Protocol Role Terminology

The following protocol roles are defined to specify unambiguous conformance requirements:

Client: Initiator of outgoing connections and sender of outgoing operation requests (Hypertext Transfer Protocol -- HTTP/1.1 [RFC7230] User Agent).
System: Listener for incoming IPP session requests and receiver of incoming IPP operation requests (Hypertext Transfer Protocol -- HTTP/1.1 [RFC7230] Server) that exposes an IPP System object and implements a System Service.

2.4 Acronyms and Organizations

DNS-SD: Domain Name System Based Service Discovery [RFC6763]
IANA: Internet Assigned Numbers Authority, http://www.iana.org/

3. Requirements

3.1 Rationale

Given the following existing specifications:

1. IPP System Service v1.0 (SYSTEM) [PWG5100.22]
2. Multicast DNS [RFC6762]
3. DNS-Based Service Discovery [RFC6763]

And given the need to discover IPP System Services, the IPP System Service Discover v1.0 registration should:

1. Define attributes needed to support DNS-SD, and
2. Define a DNS-SD service type for IPP System Services.

3.2 Use Cases

3.2.1 Discover an IPP System Service

Jane is managing the printing services on an enterprise network. She uses a management application on her Client device to find the servers on her network and make configuration changes to and monitor the status of the various services they provide.

3.3 Exceptions

There are no exceptions beyond those defined in the Internet Printing Protocol/1.1 [STD92].
3.4 Out of Scope

The following are considered out of scope for this registration:

1. Definition of new discovery protocols.

3.5 Design Requirements

The design requirements for this registration are:

1. Define an attribute for the DNS-SD service name;
2. Define a DNS-SD service type for the IPP System Service; and
3. Define sections to register the attribute and service type with IANA.
4. Model

Provide detailed information starting in section 4. Attributes, values, and operations are defined in later sections.

5. Discovery

5.1 DNS-Based Service Discovery

DNS-Based Service Discovery (DNS-SD) [RFC6763] uses service (SRV) records and traditional unicast and multicast DNS (mDNS) [RFC6762] queries. Services are identified by a service instance name consisting of an instance name, a service type or subtype name, and a domain name. Discovery of Systems involves a single service type as described in the following sections.

Systems that support DNS-SD MUST support mDNS and MAY support dynamic DNS updates via Dynamic Updates in the Domain Name System (DNS UPDATE) [RFC2136] and other mechanisms.

5.1.1 IPP System Service Type

This specification defines the "_ipps-system._tcp" service type to allow Clients to discover Systems. Because the IPP System Service v1.0 [PWG5100.22] REQUIRES implementations to support IPPS [RFC7472], there is no non-IPPS service type.

5.1.2 Service (SRV) Instance Name

Systems MUST NOT use a service instance name containing a unique identifier by default. A unique identifier MAY be added to the instance if there is a name collision.

The domain portion of the service instance name MUST BE "local." for mDNS.

Systems that support DNS-SD MUST advertise the "_ipps-system._tcp" service over mDNS. For example, a System named "Example System" would advertise the service instance name "Example System._ipps-system._tcp.local.".

5.1.3 Geo-Location (LOC)

Systems MUST publish LOC records [RFC1876] over mDNS to provide the physical location of the System. Systems MUST allow the End User to configure the geo-location manually. If the accuracy of the geo-location is unknown, a value of 9x10^9 meters (0x99) MUST be used.
5.1.4 Text (TXT)

Systems MUST publish a text (TXT) record that provides service information over mDNS.
Systems that support dynamic DNS updates MUST publish separate TXT records for each
domain that is updated. Error! Reference source not found. Table 1 lists all the key/value
pairs that are defined with the corresponding default values. Systems SHOULD omit
key/value pairs when the value matches the default value for the corresponding key to limit
the size of the TXT record.

The combined length of a TXT key/value pair ("key=value") cannot exceed 255 octets. This
limit is sometimes smaller than the limit imposed by the corresponding IPP attribute.

The combined length of all TXT key/value pairs provided by the System SHOULD BE 400
octets or less for unicast DNS and MUST NOT exceed 1300 octets for multicast DNS.

Clients MUST ignore incomplete key/value pairs at the end of a truncated TXT record.

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td>The type of authentication information that is required for the System as reported by the "system-xri-supported.xri-authentication" attribute values.</td>
<td>'none'</td>
</tr>
<tr>
<td>note</td>
<td>The location of the System as reported by the "system-location" System Description attribute.</td>
<td>" (empty string)</td>
</tr>
<tr>
<td>UUID</td>
<td>The UUID of the System without the 'urn:uuid:' prefix as reported by the "system-uuid" System Status attribute.</td>
<td>" (empty string)</td>
</tr>
</tbody>
</table>

5.1.4.1 air

The "air" key defines the type of authentication information that is required for imaging. The
value is derived from the "xri-authentication" member attribute in the "system-xri-supported"
System Description attribute [PWG5100.22]. The following values are supported:

'certificate'; Authentication using Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) certificates. This is equivalent to the 'certificate' value for the "xri-
authentication" member attribute.

'negotiate'; Kerberized authentication is required. This is equivalent to the 'negotiate'
value for the "xri-authentication" member attribute.

'none'; No authentication is required. This is equivalent to the 'none' value for the "xri-
authentication " member attribute.
'oauth'; OAuth 2.0 authentication is required using the Bearer method. This is equivalent to the 'oauth' value for the "xri-authentication " member attribute.

'username,password'; Username + password authentication is required. This is equivalent to the 'basic' or 'digest' values for the "xri-authentication " member attribute.

The default value for the "air" key is 'none'.

5.1.4.2 UUID

The REQUIRED "UUID" key provides the value of the "system-uuid" System Status attribute [PWG 5100.22] without the leading "urn:uuid:". For example, if a System reports a "system-uuid" value of:

urn:uuid:12345678-9ABC-DEF0-1234-56789ABCDEF0

The "UUID" key will have a value of:

12345678-9ABC-DEF0-1234-56789ABCDEF0

6. New Attributes

6.1 System Description Attributes

6.1.1 system-dns-md-name (name(63))

This REQUIRED attribute provides the current DNS-SD service name for the System. For example, if the System registers "Example System._ipp-system._tcp.local.", this attribute would contain "Example System".

Systems that support changing the value using the Set-System-Attributes operation MUST list 'system-dns-md-name' in the "system-settable-attributes-supported" System Description attribute [PWG5100.22]. When a new name is set, the System MUST re-register all DNS-SD services associated with it. However, if the new name causes a collision with other network devices, the System MUST replace the value set with a non-conflicting name as required by multicast DNS, typically by appending a unique number to the provided name.

Note: Changing the DNS-SD service name can prevent Clients from resolving the System's services if those Clients use a statically configured name for the System.
7. Conformance Requirements

7.1 System Conformance Requirements

In order for a System to claim conformance to this document, a System MUST support:

1. The required discovery methods defined in section 5;
2. The required attribute defined in section 6;
3. The internationalization considerations defined in section 8; and
4. The security considerations defined in section 9.

7.2 Client Conformance Requirements

In order for a Client to claim conformance to this document, a Client MUST support:

1. The required discovery methods defined in section 5;
2. The required attributes defined in section 6;
3. The internationalization considerations defined in section 8; and
4. The security considerations defined in section 9.

8. Internationalization Considerations

For interoperability and basic support for multiple languages, conforming implementations MUST support:

1. The Universal Character Set (UCS) Transformation Format -- 8 bit (UTF-8) [STD63] encoding of Unicode [UNICODE] [ISO10646]; and
2. The Unicode Format for Network Interchange [RFC5198] which requires transmission of well-formed UTF-8 strings and recommends transmission of normalized UTF-8 strings in Normalization Form C (NFC) [UAX15].

Unicode NFC is defined as the result of performing Canonical Decomposition (into base characters and combining marks) followed by Canonical Composition (into canonical composed characters wherever Unicode has assigned them).

WARNING – Performing normalization on UTF-8 strings received from Clients and subsequently storing the results (e.g., in Job objects) could cause false negatives in Client searches and failed access (e.g., to Printers with percent-encoded UTF-8 URIs now 'hidden').

Implementations of this specification SHOULD conform to the following standards on processing of human-readable Unicode text strings, see:

1. Unicode Bidirectional Algorithm [UAX9] – left-to-right, right-to-left, and vertical
Unicode Line Breaking Algorithm [UAX14] – character classes and wrapping

Unicode Normalization Forms [UAX15] – especially NFC for [RFC5198]

Unicode Text Segmentation [UAX29] – grapheme clusters, words, sentences

Unicode Identifier and Pattern Syntax [UAX31] – identifier use and normalization

Unicode Collation Algorithm [UTS10] – sorting

Unicode Locale Data Markup Language [UTS35] – locale databases

Implementations of this specification are advised to also review the following informational documents on processing of human-readable Unicode text strings:

Unicode Character Encoding Model [UTR17] – multi-layer character model

Unicode Character Property Model [UTR23] – character properties

Unicode Conformance Model [UTR33] – Unicode conformance basis

9. Security Considerations

The IPP extensions defined in this document require the same security considerations as defined in the Internet Printing Protocol/1.1 [STD92].

Implementations of this specification SHOULD conform to the following standard on processing of human-readable Unicode text strings, see:

Implementations of this specification are advised to also review the following informational document on processing of human-readable Unicode text strings:

Unicode Security FAQ [UNISECFAQ] – common Unicode security issues
10. IANA Considerations

10.1 Attribute Registrations

The attributes defined in this registration will be published by IANA according to the procedures in the Internet Printing Protocol/1.1 [STD92] in the following file:

http://www.iana.org/assignments/ipp-registrations

The registry entries will contain the following information:

<table>
<thead>
<tr>
<th>System Description attributes:</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>system-dns-sd-name(name(63))</td>
<td>[IPPSYSDISC10]</td>
</tr>
</tbody>
</table>

10.2 Service Type Registration

The DNS-SD service type defined in this specification will be published by IANA according to the procedures in Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry [BCP165].

The registration template is as follows:

Service Name: ipps-system
Transport Protocol(s): tcp
Assignee/Contact: Michael Sweet, msweet@msweet.org
Description: Imaging System Services using the Internet Printing Protocol over HTTPS.
Reference: THIS SPECIFICATION
Port Number:
Service Code:
Known Unauthorized Uses:
Assignment Notes: Change controller is The Printer Working Group, c/o The IEEE Industry Standards and Technology Organization, 445 Hoes Lane, Piscataway, NJ 08854, USA
11. References

11.1 Normative References

11.2 Informative References

12. Author's Addresses
13. Change History

This section will be removed when this document is published.

13.1 March 26, 2020

Initial revision.