
Why use HTTP?
 - Builds on existing, proven technology
 - Immediately works with existing components
 - Web Browsers
 - Web Servers
 - Proxies, Gateways, Firewalls

 - very rapid prototyping/development possible using
 - HTML Forms
 - CGI and/or existing Server APIs

 - Leverages other work done for the web
 - security (SSL, SET, SHTTP)
 - directory (LDAP)
 - naming (URLs)

Concerns with HTTP that have been raised include
 - HTTP is stateless
 - Performance/network traffic

But ...
 - Maintaining state is not required across connections for Print operations
 - Performance problems are largely caused by the multiple connections
 created by Browsers as they render a page of HTML. There is nothing
 intrinsic in the protocol that makes performance a problem.

Web Server Interfaces

When the POST method is used the data is actually carried in the body part of the HTTP
message. The server passes the length of the data and the content type to the CGI application
in the environment variables "CONTENT_LENGTH and "CONTENT_TYPE", respectively.
The data itself is passed to the CGI application’s stdin.

When the GET method is used, the data is transported as part of the URL, and is also
passed to the CGI application in an environment variable, QUERY_STRING.

In either case, the data to be passed to the CGI application is normally encoded as

 name=value&name=value&name=value& ...

However, note that a CGI application does not require the data to be coded this way.

The data stream follows URL encoding rules, that is, spaces are replaced by plus signs
and certain special characters are converted to hexadecimal.

The CGI application used to process the data must be named in the URL. For example,
sending a request to some.domain.com and requesting that the application "IPP.exe"
be used to process the content of the HTTP message would require the URL

 "http://some.domain.com/ipp.exe"

CGI

Server APIs (e.g. Microsoft ISAPI or Netscape NSAPI)

Microsoft, Netscape and presumably other Web server developers, have provided
APIs in their servers which give programmable access to HTTP data without using the
CGI interface. This has been done specifically to allow for easy extendability of the
server capabilities and to remove performance issues related to the use of the CGI
interface. These APIs pass information, such as content type and length, in data
structures defined by the API. Operations are then provided in the API to read the
data in the message body.

Microsoft requires that such applications be written as DLLs. In this case, the URL
specifies the DLL as

 "http://some.domain.com/ipp.dll"

Scoping Philosophy

One could approach the scoping rules for IPP datastreams in a couple of different ways. The choice
of scoping philosophy will impact the encoding of the datastream. I think of 2 simple cases:

Case I: Scoping, if provided, is
implicit and defined by position
in the datastream.

Header stuff

Job attributes

Document 1 attributes

Document 1

Document 2 attributes

Document 2

Case 2: Scoping is explicit
and defined by markers and
lengths in the data stream.

Header stuff

Job attributes

Document 1 content

Begin Document 2

Begin Job

Begin Document 1

Document 1 attributes

Obviously all kinds of combinations and encodings are possible. Although case 1 appears
simpler, I believe that case 2 is the better approach. It makes extension easier, provides for
validity checking of the content and strict application of scoping rules, and I think is easier
to parse.

HTML/Forms vs. Imbedded Protocol

Using helper applications or Java on the client , combined with the use of Server applications written to
the server APIs provide a tremendous amount of flexibility without requiring changes to existing
browsers or servers. Assuming that both my client side helper application and my server side
application conform to a standard concrete syntax, it shouldn’t matter what the syntax looks like, just
that both use the same one. Thus, I could use either the standard CGI syntax as described previously,
or the imbedded protocol defined in the current IPP draft.

If I insist on using a standard browser, without a helper application, and depend on html forms as the
client side datastream generator, then I’m pretty well stuck with standard CGI syntax. Using the CGI
syntax, the Print Request example in the IPP appendix would look something like the following, the
stuff in the box being the IPP unique stuff.

Post http://some.domain.com/ipp.exe/printer-1 http/1.0
 Content-type = Application/IPP

 "request-line"=Print+IPP/1.0
 "job_name"=My+Job
 "medium"=iso-a4-white
 "notification-events"=Job-completion
 "notification-address"=Joe@pc.domain.com
 "document_name"=letter+to+Mom
 "Document_Format"=Postscript/2.0
 "Document_content=%!PS-Adobe-3.0
%%Title: PowerPoint -Ipp2.ppt
%%Creator: PSCRIPT.DRV Version 4.0
%%CreationDate: 12/04/96 12:24:21
%%BoundingBox: 19 9 593 784
%%Pages: (atend)
%%PageOrder: Special
%%Requirements:
%%DocumentNeededFonts: (atend)
%%DocumentSuppliedFonts: (atend)
%%DocumentData: Clean7Bit
%%LanguageLevel: 1
%%EndComments
...

URL Encoding Problem

Given the previous flow, I immediately note that there is a problem with the document content
being passed in standard CGI format. To do so would require that we force URL encoding
rules on the document content. Otherwise it is not valid CGI input. This would require that all
blanks in the sample Postscript file be replaced with plus signs and certain special characters
would be converted to hexadecimal. This would be pretty disastrous! It is also not clear what
will happen when the parser finds CRs and LFs in the PostScript file.

Post http://some.domain.com/ipp.exe/printer-1 http/1.0
 Content-type = Application/IPP

 "request-line"=Print+IPP/1.0
 "job_name"=My+Job
 "medium"=iso-a4-white
 "notification-events"=Job-completion
 "notification-address"=Joe@pc.domain.com
 "document_name"=letter+to+Mom
 "Document_Format"=Postscript/2.0
 "Document_content=%!PS-Adobe-3.0
%%Title: PowerPoint -Ipp2.ppt
%%Creator: PSCRIPT.DRV Version 4.0
%%CreationDate: 12/04/96 12:24:21
%%BoundingBox: 19 9 593 784
%%Pages: (atend)
%%PageOrder: Special
%%Requirements:
%%DocumentNeededFonts: (atend)
%%DocumentSuppliedFonts: (atend)
%%DocumentData: Clean7Bit
%%LanguageLevel: 1
%%EndComments
...

Post http://some.domain.com/ipp.exe/printer-1 http/1.0
 Content-type = Application/IPP

 "request-line"=Print+IPP/1.0
 "job_name"=My+Job
 "medium"=iso-a4-white
 "notification-events"=Job-completion
 "notification-address"=Joe@pc.domain.com
 "document_name"=letter+to+Mom
 "Document_Format"=Postscript/2.0
 "Document_content=%!PS-Adobe-3.0
%%Title:+PowerPoint +-Ipp2.ppt
%%Creator:+PSCRIPT.DRV+Version 4.0
%%CreationDate:+12/04/96+12:24:21
%%BoundingBox:+19+9+593+784
%%Pages:+(atend)
%%PageOrder:+Special
%%Requirements:
%%DocumentNeededFonts:+(atend)
%%DocumentSuppliedFonts:+(atend)
%%DocumentData:+Clean7Bit
%%LanguageLevel:+1
%%EndComments
...

Postscript file gets clobbered
by superimposing URL encoding
rules (and maybe by getting rid of
CRs and LFs.

Aha, but why not carry the document as a separate mime encoded message?

I think this is the suggestion that Bob Herriot was making. My apologies Bob if I have not understood
correctly. However, one could send the IPP content as a mutipart/mixed encoded message. The
job specification could be sent as text and the postscript job as -- well, postscript. This would appear
as

Post http://some.domain.com/ipp.exe/printer-1 http/1.0
 Content-type = Multipart/mixed;
 boundary=unique-boundary-1

content-type=text/plain; charset=US-ASCII
"request-line"=Print+IPP/1.0
 "job_name"=My+Job
 "medium"=iso-a4-white
 "notification-events"=Job-completion
 "notification-address"=Joe@pc.domain.com
 "document_name"=letter+to+Mom
--unique-boundary-1

content-type=application/postscript;
 boundary=unique-boundary-2
%!PS-Adobe-3%%Title: PowerPoint -Ipp2.ppt
%%Creator: PSCRIPT.DRV Version 4.0
%%CreationDate: 12/04/96 12:24:21
%%BoundingBox: 19 9 593 784
%%Pages: (atend)
%%PageOrder: Special
%%Requirements:
%%DocumentNeededFonts: (atend)
%%DocumentSuppliedFonts: (atend)
%%DocumentData: Clean7Bit
%%LanguageLevel: 1
%%EndComments
...

--unique-boundary-2

The structure Problem

Using Multipart/mixed mime types does seem to help, but I see two additional. potential problems:

Post http://some.domain.com/ipp.exe/printer-1 http/1.0
 Content-type = Multipart/mixed;
 boundary=unique-boundary-1

content-type=text/plain; charset=US-ASCII
"request-line"=Print+IPP/1.0
 "job_name"=My+Job
 "medium"=iso-a4-white
 "notification-events"=Job-completion
 "notification-address"=Joe@pc.domain.com
 "document_name"=letter+to+Mom
--unique-boundary-1

content-type=application/postscript;
 boundary=unique-boundary-2
%!PS-Adobe-3%%Title: PowerPoint -Ipp2.ppt
%%Creator: PSCRIPT.DRV Version 4.0
%%CreationDate: 12/04/96 12:24:21
%%BoundingBox: 19 9 593 784
%%Pages: (atend)
%%PageOrder: Special
%%Requirements:
%%DocumentNeededFonts: (atend)
%%DocumentSuppliedFonts: (atend)
%%DocumentData: Clean7Bit
%%LanguageLevel: 1
%%EndComments
...

--unique-boundary-2

boundary must be a
unique string not
found in the data.
This requires prescanning
the document to
guarantee a unique
string can be determined.

The standard does not
allow for related body parts.
Thus there is no way, except
by convention to know that
the job part is related to the
document part

These problems could be showstoppers when shipping multiple documents, or when
eventually extending the standard to allow mixed job attributes on a document basis.

So ... back to an imbedded protocol

Given the existance of server apis and cgi we can still go back to the imbedded protocol approach, without
impacting current server implementations. This does require a helper application or a Java application
to generate the appropriate syntax on the client side.

Post http://some.domain.com/ipp.exe/printer-1 http/1.0
 Content-type = Application/IPP

Print IPP/1.0
 Print_Job_Header
 Content_length=56787
 job_name=My Job
 medium=iso-a4-white
 notification-events=Job-completion
 notification-address=Joe@pc.domain.com
 document_name=letter to Mom
 Document_Header
 Document_length=56653
 Document_Type=postscript;
 %!PS-Adobe-3%%Title: PowerPoint -Ipp2.ppt
 %%Creator: PSCRIPT.DRV Version 4.0
 %%CreationDate: 12/04/96 12:24:21
 %%BoundingBox: 19 9 593 784
 %%Pages: (atend)
 %%PageOrder: Special
 %%Requirements:
 %%DocumentNeededFonts: (atend)
 %%DocumentSuppliedFonts: (atend)
 %%DocumentData: Clean7Bit
 %%LanguageLevel: 1
 %%EndComments

Length allows me to find the end of
the job. In the future I could now include
multiple jobs in the same message.

Use of a document header
and a document length
provide strong scoping
rules. Allows future extension
to real multiple documents,
with different job attributes.

Length allows me to pass the entire
document on to another process,
without having to scan byte by byte, looking
for the end.

Defining a new mime type gives
us the freedom to define what our
syntax looks like - not be forced to live
with what has been defined for another
application.

