INTERNET-DRAFT
IPP: The 'collection' attribute syntax
May 4, 2000

INTERNET-DRAFT
Roger deBry

<draft-ietf-ipp-collection-04.txt>
Utah Valley State College

T. Hastings

Xerox Corporation

R. Herriot

Xerox Corporation

K. Ocke

Xerox Corporation

P. Zehler

Xerox Corporation

May 4, 2000

Internet Printing Protocol (IPP):

The 'collection' attribute syntax

Copyright (C) The Internet Society (2000). All Rights Reserved.

Status of this Memo:

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of [RFC2026]. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress".

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed as http://www.ietf.org/shadow.html.

Abstract

This document specifies an OPTIONAL attribute syntax called 'collection' for use with the Internet Printing Protocol/1.0 (IPP) [RFC2565, RFC2566], IPP/1.1 [ipp-mod, ipp-pro], and subsequent versions. A 'collection' is a container holding one or more named values, which are called "member" attributes. A collection allows data to be grouped like a PostScript dictionary or a Java Map. This document also specifies the conformance requirements for a definition document that defines a collection attribute.

The full set of IPP documents includes:

Design Goals for an Internet Printing Protocol [RFC2567]

Rationale for the Structure and Model and Protocol for the Internet Printing Protocol [RFC2568]

Internet Printing Protocol/1.1: Model and Semantics (this document)

Internet Printing Protocol/1.1: Encoding and Transport [IPP-PRO]

Internet Printing Protocol/1.1: Implementer's Guide [IPP-IIG]

Mapping between LPD and IPP Protocols [RFC2569]

The "Design Goals for an Internet Printing Protocol" document takes a broad look at distributed printing functionality, and it enumerates real-life scenarios that help to clarify the features that need to be included in a printing protocol for the Internet. It identifies requirements for three types of users: end users, operators, and administrators. It calls out a subset of end user requirements that are satisfied in IPP/1.0. A few OPTIONAL operator operations have been added to IPP/1.1.

The "Rationale for the Structure and Model and Protocol for the Internet Printing Protocol" document describes IPP from a high level view, defines a roadmap for the various documents that form the suite of IPP specification documents, and gives background and rationale for the IETF working group's major decisions.

The "Internet Printing Protocol/1.1: Encoding and Transport" document is a formal mapping of the abstract operations and attributes defined in the model document onto HTTP/1.1 [RFC2616]. It defines the encoding rules for a new Internet MIME media type called "application/ipp". This document also defines the rules for transporting over HTTP a message body whose Content-Type is "application/ipp". This document defines a new scheme named 'ipp' for identifying IPP printers and jobs.

The "Internet Printing Protocol/1.1: Implementer's Guide" document gives insight and advice to implementers of IPP clients and IPP objects. It is intended to help them understand IPP/1.1 and some of the considerations that may assist them in the design of their client and/or IPP object implementations. For example, a typical order of processing requests is given, including error checking. Motivation for some of the specification decisions is also included.

The "Mapping between LPD and IPP Protocols" document gives some advice to implementers of gateways between IPP and LPD (Line Printer Daemon) implementations.

Table of Contents

Error! Bookmark not defined.
Error! Bookmark not defined.
Error! Bookmark not defined.
6
7
Error! Bookmark not defined.
Error! Bookmark not defined.
11
12
13
1
Problem Statement
5
2
Solution
5
3
Definition of a Collection Attribute
6
3.1
Information to Include
6
3.2
Nested Collections
9
4
Collection Attributes as Attributes in Operations
9
4.1
General Rules
9
4.2
Unsupported Values
9
5
Example definition of a collection attribute
9
5.1
media-col (collection)
10
5.1.1
media-color (type3 keyword | name(MAX)
10
5.1.2
media-size (collection)
10
5.2
media-col-default (collection)
11
5.3
media-col-ready (1setOf collection)
11
5.4
media-col-supported (1setOf type2 keyword)
11
6
A Second Example Definition Of A Collection Attribute
11
7
Encoding
12
7.1
Additional tags defined for representing a collection attribute value
12
7.2
Example encoding: "media-col" (collection)
13
8
Legacy issues
16
9
IANA Considerations
16
10
Internationalization Considerations
16
11
Security Considerations
16
12
References
17
13
Author's Addresses
17
14
Appendix A: Encoding Example of a Simple Collection
18
15
Appendix B: Encoding Example of 1setOf Collection
20
16
Appendix C: Encoding Example of Collection containing 1setOf XXX attribute
23
17
Appendix D: Full Copyright Statement
25

Table of Tables

10Table 1 - "media-col" member attributes

Table 2 - "media-size" collection member attributes
10
Table 3 - Tags defined for encoding the 'collection' attribute syntax
12
Table 4 - Overview Encoding of "media-col" collection
13
Table 5 - Example Encoding of "media-col" collection
14
Table 6 - Overview Encoding of simple collection
18
Table 7 - Example Encoding of simple collection
19
Table 8 - Overview Encoding of 1setOf collection
20
Table 9 - Example Encoding of 1setOf collection
 PAGEREF

_Toc481931112 \h

21

Table 10 - Overview Encoding of collection with 1setOf value
23
Table 11 - Example Encoding of collection with 1setOf value
23

1 Problem Statement

The IPP Model and Semantics [ipp-mod] supports most of the common data structures that are available in programming languages. It lacks a mechanism for grouping several attributes of different types. The Java language uses the Map to solve this problem and PostScript has a dictionary. The new mechanism for grouping attributes together (called 'collection' mechanism) must allow for optional members and subsequent addition of new members.

The 'collection' mechanism must be encoded in a manner consistent with existing 1.0 and 1.1 parsing rules (see [ipp-pro]). Current 1.0 and 1.1 parsers that don't support the 'collection' mechanism must not confuse collections or parts of collection they receive with other attributes.

2 Solution

The new mechanism is a new IPP attribute syntax called a 'collection'. As such, each collection value is a value of an attribute whose attribute syntax type is defined to be a 'collection'. Such an attribute is called a collection attribute. The name of the collection attribute serves to identify the collection value in an operation request or response, as with any attribute value.

The 'collection' attribute syntax is a container holding one or more named values (i.e., attributes), which are called member attributes. Each collection attribute definition document lists the mandatory and optional member attributes of each collection value. A collection value is similar to an IPP attribute group in a request or a response, such as the operation attributes group. They both consist of a set of attributes.

As with any attribute syntax, the document that defines a collection attribute specifies whether the attribute is single-value (collection) or multi-valued (1setOf
collection). If the attribute is multi-valued (1setOf collection) each collection value MUST be a separate instance of a single definition of a collection, i.e. it MUST have the same member attributes except for OPTIONAL member attributes. If we view each collection definition as a separate syntax type, this rule continues the IPP/1.1 notion that each attribute has a single type or pattern (e.g. "keyword | name" is a pattern). Without this rule, the supported values would be more difficult to describe and the mechanism defined in item 4 of section 3.1would not be sufficient.

The name of each member attribute MUST be unique for a collection attribute, but MAY be the same as the name of a member attribute in another collection attribute and/or MAY be the same as the name of an attribute that is not a member of a collection. The rules for naming member attributes are given in section 3.1.

Each member attribute can have any attribute syntax type, including 'collection', and can be either single-valued or multi-valued. The length of a collection value is not limited. However, the length of each member attribute MUST NOT exceed the limit of its attribute syntax.

The member attributes in a collection MAY be in any order in a request or response. When a client sends a collection attribute to the Printer, the order that the Printer stores the member attributes of the collection value and the order returned in a response MAY be different from the order sent by the client.

A collection value MUST NOT contains two or more member attributes with the same attribute name. Such a collection is mal-formed. Clients MUST NOT submit such malformed requests and Printers MUST NOT return such malformed responses. If such a malformed request is submitted to a Printer, the Printer MUST (depending on implementation) either (1) reject the request with the 'client-error-bad-request' status code (see section
 13.1.4.1), or (2) accept the request and use only one of each duplicate member attribute..
3 Definition of a Collection Attribute

This section describes the requirements for any collection attribute definition.

3.1

3.2 Information to Include
When a specification document defines an "xxx" collection attribute, i.e., an attribute whose attribute syntax type is 'collection' or '1setOf collection'; the definition document MUST include the following aspects of the attribute semantics. Suppose the "xxx" collection attribute contains N member attributes named "aaa1", "aaa2", …, "aaaN" ("aaaI" represents any one of these N member attributes).
1. The name of the collection attribute MUST be specified (e.g.
2. "xxx"). The selection of the name "xxx" MUST follow the same rules for uniqueness as for attributes of any other syntax type (as defined by IPP/1.1) unless "xxx" is a member attribute of another collection. Then the selection of the name "xxx" MUST follow the rules for uniqueness defined in item 5

 REF _Ref482004247 \r \h
a) of this list.

3. The collection attribute syntax MUST be of type 'collection' or '1setOf collection'.

4. The context of the collection attribute MUST be specified, i.e., whether the attribute is an operation attribute, a Job Template attribute, a Job Description attribute, a Printer Description attribute, a member attribute of a particular collection attribute, etc.

5. An "xxx-supported" attribute MUST be specified and it has one of the following two forms:

a) "xxx-supported" is a "1setOf collection" which enumerates all of the supported collection values of "xxx". If a collection of this form contains a nested collection, it MUST be of the same form.

For example, "media-size-supported" might have the values {{x-dimension:210, y-dimension:297},{x-dimension:297, y-dimension:420}} to show that it supports two values of "media size": A4 (210x297) and A3 (297x420). It does not support other combinations of "x-dimension" and "y-dimension" member attributes, such as 210x420 or 297x297 and it does not supported non-enumerated values, such as 420x595.

b) "xxx-supported" is a "1setOf type2 keyword" which enumerates the names of all of the member attributes of "xxx": "aaa1", "aaa2", …, "aaaN". If a collection of this form contains a nested collection, it MAY be of either form. See item 5

 REF _Ref482011137 \r \p f) below for details on supported values of member attributes.

For example, "media-col-supported" might have the keyword values: "media-size" and "media-color".

6. The member attributes MUST be defined. For each member attribute the definition document MUST provide the following information:

a) The member attribute's name (e.g., "aaa") MUST be unique within the collection being defined and MUST either
i) reuse the attribute name of another attribute (that is unique across the entire IPP attribute name space) and have the same syntax and semantics as the reused attribute (if the condition of item 4

 REF _Ref482012881 \r \p b) above is met). For example, a member attribute definition could reuse the IPP/1.1 "media" attribute.

ii) potentially occur elsewhere in the entire IPP attribute name space. (if the condition of item 4

 REF _Ref482009508 \r \p a) above is met). For example, a member attribute could be "x-dimension" which could potentially occur in another collection or as an attribute outside of a collection.

iii) be unique across the entire IPP attribute name space (if the condition of item 4

 REF _Ref482012881 \r \p b) above is met). For example, a member attribute could be "media-color" which must unique be across the entire IPP attribute name space.
b) Whether the member attribute is REQUIRED or OPTIONAL for the Printer to support

c) Whether the member attribute is REQUIRED or OPTIONAL for the client to supply in a request

d) The member attribute's syntax type, which can be any attribute syntax, including '1setOf X', 'collection', and '1setOf collection'. If this attribute name reuses the name of another attribute (case of item a1 above), it MUST have the same attribute syntax, including cardinality (whether or not 1setOf).

e) The semantics of the "aaa" member attribute. The semantic definition MUST include a description of any constraint or boundary conditions the member attribute places on the associated attribute, especially if the attribute reuses the name of another attribute (case of item a1 above)

f)
·
g) The supported values for the each "aaaI" member attribute (of the member attributes "aaa1", "aaa2", …, "aaaN") is specified by one of two mechanisms.

i) If "xxx-supported" is a "1setOf collection" (see item 4

 REF _Ref482009508 \r \p \h
a) above), the value for each "aaaI" is specified in each collection value of "xxx-supported" in the context of other member attributes. That is, "xxx-supported" enumerates all supported values of "xxx".

ii) If the value of "xxx-supported" is a "1setOf type2 keyword" (see item 4

 REF _Ref482009879 \r \p b) above), the supported values of "aaaI" are the values specified by either i) the "aaaI-supported" attribute or ii) the definition of the member attribute "aaaI" within the document defining the "xxx" attribute. The values of each member attribute "aaaI" are specified independently of other member attributes though a Printer is not required to support all combinations of supported values.

For example, "media-col-supported" might have the keyword values: "media-size" and "media-color". Using the first method for defining supported values (an "aaaI-supported" attribute), the collection values of "media-col" are combinations of values of "media-size-supported" and "media-color-supported".If "media-size-supported" has the values of '210x297' and '297x420' and "media-color-supported" has the values of 'white' and 'pink', the Printer might support only the combinations 'white-210x297', 'pink-210x297'and 'white-297x420', and not 'pink-297x420'.

If a collection contains a member "aaaI" whose syntax type is "text", the supported values would probably be defined by the definition of "xxx" rather than by the attribute "aaaI-supported".
h) the default value of each "aaaI" member attribute if it is OPTIONAL for a client to supply the "aaa" member attribute in a request. The default value is specified by in the attribute’s definition within a document and MUST be one of the following:
·
·
·
a fixed default

i) a mechanism by which the Printer determines default

ii) an indefinite default that is left to the implementation.

iii) an attribute that the Printer uses to determine the default

7. The default value of "xxx" if a client does not supply it. The default value is specified by in the attribute’s definition within a document and MUST be one of the following:
a) a fixed default

b) a mechanism by which the Printer determines default
c) an indefinite default that is left to the implementation
d) a Printer attribute "xxx-default" which is a collection with the same member attributes as "xxx". Though optional member attributes may be absent in which case the Printer uses the defaulting rules of item 5

 REF _Ref482013676 \r \p g) above.

8. The "xxx-ready (1setOf collection)" attribute if human intervention is required to make many of the supported values available. For example, "media-col" is an attribute which has a "ready" attribute. Most attributes do not have a "ready" attribute.
3.3 Nested Collections

A member attribute may have a syntax type of 'collection' or '1setOf collection', in which case it is called a nested collection attribute. The rules for a nested collection attribute are the same as for a collection attribute as specified in section 3.1
.

4 Collection Attributes as Attributes in Operations

a)
b)
4.1

1)
2)
·
·
3.
4.
·
·
a)
b)
c)
d)
4.2

4.3

5

5.1

5.2 General Rules
A collection value is like any other IPP/1.1 value, except that it is structured. The rules for attributes with collection values are the same as for attributes of any other syntax type (see IPP/1.1), be they in any group of a request of a response.

5.3 Unsupported Values

The rules for returning an unsupported collection attribute are an extension to the current rules:

1. If the entire collection attribute is unsupported, then the Printer returns just the collection attribute name with the 'unsupported' out-of-band value (see the beginning of [ipp-mod] section 4.1) in the Unsupported Attributes Group.

2. If a collection contains unrecognized, unsupported member attributes and/or conflicting values, the attribute returned in the Unsupported Group is a collection containing the unrecognized, unsupported member attributes, and/or conflicting values. The unrecognized member attributes have an out-of-band value of 'unsupported' (see the beginning of [ipp-mod] section 4.1). The unsupported member attributes and conflicting values have their unsupported or conflicting values.

6 Example definition of a collection attribute

In some printing environments, it is desirable to allow the client to select the media by its properties, e.g., weight, color, size, etc., instead of by name. In IPP/1.1 (see [ipp-mod]), the "media (type3 keyword | name) Job Template attribute allows selection by name. It is tempting to extend the "media" attribute syntax to include "collection", but then existing clients could not understand default or supported media values that use the collection value. To preserve interoperability, a new attribute MUST BE added, e.g., "media-col (collection)". The following subsections contain a sample definition of a simplified "media-col" attribute. The definition follows the rules in section 3.
Note: we picked the name "media-col" because the name "media" is already in use. Ordinarily the collection attribute would have a name like any other attribute and would not end in "col".

The member attributes of "media-col" attribute ("media-color (type 3 keyword)" and "media-size (collection)") both follow the naming rules of item 4a3 of section 3, i.e. the names are unique across the entire IPP attribute name space. The member attributes of the "media-size (collection)" member attribute ("x-dimension (integer(0,MAX))" and "y-dimension (integer(0,MAX))") both follow the naming rules of item 4a2 of section 3, i.e. they potentially occur elsewhere in the IPP attribute name space.
6.1 media-col (collection)

The "media-col" (collection) attribute augments the IPP/1.1 [ipp-mod] "media" attribute. This collection attribute enables a client end user to submit a list of media characteristics to the Printer. When the client specifies media using the "media-col" collection attribute, the Printer object MUST match the requested media exactly. The 'collection' consists of the following member attributes:

Table 1 - "media-col" member attributes
Attribute name
attribute syntax
request
Printer Support

media-color
type3 keyword | name (MAX)
MAY
MUST

media-size
collection
MUST
MUST

The definitions for the member attributes is given in the following sub-sections:

6.1.1 media-color (type3 keyword | name(MAX)

This member attribute identifies the color of the media. Valid values are 'red', 'white' and 'blue'

The "media-color-supported" (1setOf (type3 keyword | name(MAX))) Printer attribute identifies the values of this "media-color" member attribute that the Printer supports, i.e., the colors supported.

If the client omits this member attribute, the Printer determines the value in an implementation dependent manner.
6.1.2 media-size (collection)

This member attribute identifies the size of the media. The 'collection' consists of the member attributes shown in Table 2:

Table 2 - "media-size" collection member attributes

Attribute name
attribute syntax
request
Printer Support

x-dimension
integer (0:MAX)
MUST
MUST

y-dimension
integer (0:MAX)
MUST
MUST

The definitions for the member attributes is given in the following sub-sections:

6.1.2.1 x-dimension (integer(0:MAX))

This attribute identifies the width of the media in inch units along the X axis.

6.1.2.2 y-dimension (integer(0:MAX))

This attribute identifies the height of the media in inch units along the Y axis.

The "media-size-supported" (1setOf collection) Printer attribute identifies the values of this "media-size" member attribute that the Printer supports, i.e., the size combinations
supported. The names of the member attributes are the same as the member attributes of the "media-size" collection attribute, namely "x-

dimension", and "y-dimension", since they have the same attribute syntax and the same semantics.
6.2 media-col-default (collection)

The "media-col-default" Printer attribute specifies the media that the Printer uses, if any, if the client omits the "media-col" and "media". Job Template attribute in the Job Creation operation (and the PDL doesn't include a media specification). The member attributes are defined in Table 1. A Printer MUST support the same member attributes for this default collection attribute as it supports for the corresponding "media-col" Job Template attribute.

6.3 media-col-ready (1setOf collection)

The "media-col-ready" Printer attribute identifies the media that are available for use without human intervention, i.e., the media that are ready to be used without human intervention. The collection value MUST have all of the member attributes that are supported in Table 1.

6.4 media-col-supported (1setOf type2 keyword)

The "media-col-supported" Printer attribute identifies the keyword names of the member attributes supported in the "media-col" collection Job Template attribute, i.e., the keyword names of the member attributes in Table 1 that the Printer supports.

7 A Second Example Definition Of A Collection Attribute

In some printing environments, it is desirable to allow the client to select the media for the job start sheet. The reason for not adding the 'collection' attribute syntax to the existing "job-sheets" Job Template attribute is the same as for "media". Instead, a new Job Template attribute is introduced, e.g. "job-sheet-col (collection)".

The member attributes of "job-sheet-col" attribute ("job-sheets (type 3 keyword)" and "media (type3 keyword | name)") both follow the naming rules of item 4a1 of section 3, i.e they reuse existing IPP attributes. According to the rules, their supported values come from the existing IPP attributes: "job-sheets-supported" and "media-supported". However, their default values do not come from "job-sheets-default" and "media-default", respectively. Rather the definition of "job-sheet-col" says that "job-sheets (type 3 keyword)" is required and if "media (type3 keyword | name)" is absent, the Printer uses the same media as the rest of the job uses.

If "job-sheet-col" attribute were defined to contain the member attribute "job-sheet-media (type3 keyword | name)" instead of "media (type3 keyword | name)", then the definition would also have to specify a "job-sheet-media-supported (1setOf (type3 keyword | name))" whose values would be independent of "media-supported (1setOf (type3 keyword | name))" and would be set separately by a System Administrator.

The actual text for the definition of the attribute is left as an exercise for the reader.
8 Encoding

This section defines the additional encoding tags used according to [ipp-pro] and gives an example of their use.

8.1 Additional tags defined for representing a collection attribute value

The 'collection' attribute syntax uses the tags defined in Table 3.

Table 3 - Tags defined for encoding the 'collection' attribute syntax
Tag name
Tag value
Meaning

begCollection
0x34
Begin the collection attribute value.

endCollection
0x37
End the collection attribute value.

memberAttrName
0x4A
The value is the name of the collection member attribute

When encoding a collection attribute "xxx" that contains an attribute "aaa" and is not inside another collection, the encoding follows these rules:

1. The beginning of the collection is indicated with a value tag that MUST be syntax type 'begCollection' (0x34) with a name length and Name field that represent the name of the collection attribute ("xxx") as with any attribute, followed by a value. The Printer MAY ignore the value and its length of MAY be 0. In the future, however, this field MAY contain useful information, such as the collection name (cf. the name of a C struct).
2. Each member attribute is encoded as a sequence of two or more values that appear to be part of a single multi-valued attribute, i.e. 1setOf. The first value after the 'begCollection' value has the attribute syntax 'memberAttrName' (0x4A) and its value holds the name of the first member attribute (e.g. "aaa"). The second value holds the first member’s attribute value, which can be of any attribute syntax, except 'memberAttrName' or 'endCollection'. If the first member’s attribute value is multi-valued, the third value holds the second value of the first member’s value. Otherwise, the third value holds the name of second member attribute (e.g. "bbb") and its attribute syntax is 'memberAttrName'. In this case, the fourth member’s value is the value of "bbb".

Note that the technique of encoding a 'collection' as a '1setOf' makes it easy for a Printer that doesn't support a particular collection attribute (or the collection attribute syntax at all) to simply skip over the entire collection value.

3. The end of the collection is indicated with a value tag that MUST be syntax type 'endCollection' (e.g. 0x37) and MAY have a zero name length and a zero value length. In the future, this field MAY contain useful information,such as the collection name that matches the one in the 'begCollection' .
4. It is valid to have a member attribute that is, itself, a collection attribute, i.e., collections can be nested within collections. This is represented by the occurrence of a member attribute that is of attribute syntax type 'begCollection'. Such a collection is terminated by a matching
5. 'endCollection'. The name of such a member attribute is in the immediately preceding value whose syntax type is 'memberAttrName'.

6. It is valid for a collection attribute to be multi-valued, i.e., have more than one collection value. If the next attribute immediately following the 'endCollection' has a zero name length and a tag of 'begCollection', then the collection attribute is
7. a multi-valued collection, as with any attribute. This statement applies to collections within collections and collections that are not in collections.

8.2 Example encoding: "media-col" (collection)

The collection specified in section REF _Ref481928687 \r \h

5
is used for the encoding example shown in Table 5
. The example also shows nested collections, since the "media-size" member attribute is a 'collection. The encoding example represents a blue 4x6-index cards and takes 216 octets. The Appendices contains more complex examples.
Additional examples have been included in the appendices.

The overall structure of the two collection values can be pictorially represented as:

"media-col" =

{
"media-color" = 'blue';

"media-size" =

{
"x-dimension" = 6;

"y-dimension" = 4

}

},

The full encoding is in table 4. A simplified view of the encoding looks like this:
Table 4 - Overview Encoding of "media-col" collection
Tag Value
Name
Value

begCollection
media-col
""

memberAttrName
""
media-color

keyword
""
blue

memberAttrName
""
media-size

begCollection
""
""

memberAttrName
""
x-dimension

integer
""
6

memberAttrName
""
y-dimension

integer
""
4

endCollection
""
""

endCollection
""
""

Table 5 - Example Encoding of "media-col" collection
Octets
Symbolic Value
Protocol field
comments

0x34
begCollection
value-tag
beginning of the "media-col" collection attribute

0x0009

name-length
length of (collection) attribute name

media-col
media-col
name
name of (collection) attribute

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

0x4A
memberAttrName
value-tag
starts a new member attribute: "media-color"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of "media-color" keyword

media-color
media-color
value
value is name of 1st member attribute

0x44
keyword type
value-tag
keyword type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length

blue
blue
value
value of 1st member attribute

0x4A
memberAttrName
value-tag
starts a new member attribute: "media-size"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000A

value-length
length of "media-size" keyword

media-size
media-size
value
Name of 2nd member attribute

0x34
begCollection
value-tag
Beginning of the "media-size" collection attribute which is a sub-collection

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0000

value-length
collection attribute names have no value

no value (since value-length was 0)

0x4A
memberAttrName
value-tag
starts a new member attribute: "x-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of "x-dimension" keyword

x-dimension
x-dimension
value
name of 1st sub-collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0006

value
value of 1st sub-collection member attribute

0x4A
memberAttrName
value-tag
starts a new member attribute: "y-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of the "y-dimension" keyword

y-dimension
y-dimension
value
name of 2nd sub-collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0004

value
value of 2nd sub-collection member attribute

0x37
endCollection
value-tag
end of the sub-collection

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

0x37
endCollection
value-tag
end of the 1st collection value in 1setOf

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

9 Legacy issues

IPP 1.x Printers and Clients will gracefully ignore collections and its member attributes if it does not understand the collection. The begCollection and endCollection elements each look like an attribute with an attribute syntax that the recipient doesn't support and so should ignore the entire attribute. The individual member attributes and their values will look like a 1setOf values of the collection attribute, so that the Printer simply ignores the entire attribute and all of its values. Returning unsupported attributes is also simple, since only the name of the collection attribute is returned with the 'unsupported' out-of-band value (see section 4.2).

10 IANA Considerations

This attribute syntax will be registered with IANA after the WG approves its specification according to the procedures for extension of the IPP/1.1 Model and Semantics [ipp-mod].

11 Internationalization Considerations

This attribute syntax by itself has no impact on internationalization. However, the member attributes that are subsequently defined for use in a collection may have internationalization considerations, as may any attribute, according to [ipp-mod].

12 Security Considerations

This attribute syntax causes no more security concerns than any other attribute syntax. It is only the attributes that are subsequently defined to use this or any other attribute syntax that may have security concerns, depending on the semantics of the attribute, according to [ipp-mod].

13 References

[ipp-mod]

Isaacson, S., deBry, R., Hastings, T., Herriot, R., Powell, P., "Internet Printing Protocol/1.1: Model and Semantics" draft-ietf-ipp-model-v11-06.txt, March 1, 2000.

[ipp-ntfy]

Isaacson, S., Martin, J., deBry, R., Hastings, T., Shepherd, M., Bergman, R. " Internet Printing Protocol/1.0 & 1.1: IPP Event Notification Specification" draft-ietf-ipp-not-spec-02.txt, work in progress, February 2, 2000.

[ipp-pro]

Herriot, R., Butler, S., Moore, P., Turner, R., "Internet Printing Protocol/1.1: Encoding and Transport", draft-ietf-ipp-protocol-v11-05.txt, March 1, 2000.

[RFC2565]

Herriot, R., Butler, S., Moore, P., Tuner, R., "Internet Printing Protocol/1.0: Encoding and Transport", RFC 2565, April 1999.

[RFC2566]

R. deBry, T. Hastings, R. Herriot, S. Isaacson, P. Powell, "Internet Printing Protocol/1.0: Model and Semantics", RFC 2566, April 1999.

[RFC2567]

Wright, D., "Design Goals for an Internet Printing Protocol", RFC 2567, April 1999.

[RFC2568]

Zilles, S., "Rationale for the Structure and Model and Protocol for the Internet Printing Protocol", RFC 2568, April 1999.

[RFC2569]

Herriot, R., Hastings, T., Jacobs, N., Martin, J., "Mapping between LPD and IPP Protocols", RFC 2569, April 1999.

[RFC2616]

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, "Hypertext Transfer Protocol - HTTP/1.1", RFC 2616, June 1999.

14 Author's Addresses

Roger deBry

Utah Valley State College

Orem, UT 84058

Phone: (801) 222-8000

EMail: debryro@uvsc.edu
Tom Hastings

Xerox Corporation

737 Hawaii St. ESAE 231

El Segundo, CA 90245

Phone: 310-333-6413

Fax: 310-333-5514

e-mail: hastings@cp10.es.xerox.com

Robert Herriot

Xerox Corp.

3400 Hill View Ave, Building 1

Palo Alto, CA 94304

Phone: 650-813-7696

Fax:
 650-813-6860

e-mail: robert.herriot@pahv.xerox.com

Kirk Ocke

Xerox Corp.

800 Phillips Rd

M/S 139-05A

Webster, NY 14580

Phone: (716) 442-4832

EMail: kirk.ocke@usa.xerox.com

Peter Zehler

Xerox Corp.

800 Phillips Rd

M/S 139-05A

Webster, NY 14580

Phone: (716) 265-8755

EMail: peter.zehler@usa.xerox.com

15 Appendix A: Encoding Example of a Simple Collection

The overall structure of the collection value can be pictorially represented as:

" media-size " =

{
"x-dimension" = 6;

"y-dimension" = 4

}

A simplified view of the encoding would look like this:

Table 6 - Overview Encoding of simple collection
Tag Value
Name
Value

begCollection
media-size
""

memberAttrName
""
x-dimension

integer
""
6

memberAttrName
""
y-dimension

integer
""
4

endCollection
""
""

Note: "" represents a name or value whose length is 0.

Table 7 - Example Encoding of simple collection
Octets
Symbolic Value
Protocol field
comments

0x34
begCollection
value-tag
beginning of the "media-size" collection attribute

0x000A

name-length
length of (collection) attribute name

media-size
media-size
name
name of (collection) attribute

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

0x4A
memberAttrName
value-tag
starts member attribute: "x-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of "x-dimension" keyword

x-dimension
x-dimension
value
name of 1st collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0006

value
value of 1st collection member attribute

0x4A
memberAttrName
value-tag
starts a new member attribute: "y-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of the "y-dimension" keyword

y-dimension
y-dimension
value
name of 2nd collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf for media-size

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0004

value
value of 2nd collection member attribute

0x37
endCollection
value-tag
end of the collection

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

16 Appendix B: Encoding Example of 1setOf Collection
The overall structure of the collection value can be pictorially represented as:

"media-size-supported" =

{
"x-dimension" = 6;

"y-dimension" = 4

},

{
"x-dimension" = 3;

"y-dimension" = 5

};

A simplified view of the encoding would look like this:

Table 8 - Overview Encoding of 1setOf collection
Tag Value
Name
Value

begCollection
media-size-supported
""

memberAttrName
""
x-dimension

integer
""
6

memberAttrName
""
y-dimension

integer
""
4

endCollection
""
""

begCollection
""
""

memberAttrName
""
x-dimension

integer
""
3

memberAttrName
""
y-dimension

integer
""
5

endCollection
""
""

Table 9 - Example Encoding of 1setOf collection
Octets
Symbolic Value
Protocol field
comments

0x34
begCollection
value-tag
beginning of the "media-size-supported (1setOf collection" attribute

0x00014

name-length
length of (collection) attribute name

media-size-supported
media-size-supported
name
name of (collection) attribute

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

0x4A
memberAttrName
value-tag
starts member attribute: "x-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of "x-dimension" keyword

x-dimension
x-dimension
value
name of 1st collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0006

value
value of 1st collection member attribute

0x4A
memberAttrName
value-tag
starts member attribute: "y-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of the "y-dimension" keyword

y-dimension
y-dimension
value
name of 2nd collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0004

value
value of 2nd collection member attribute

0x37
endCollection
value-tag
end of the collection

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

0x34
begCollection
value-tag
beginning of the 2nd member of the 1SetOf "sizes-avail " collection attribute

0x0000

name-length
Zero length name indicates this is member of previous attribute

name
no name (since name-length was 0)

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

0x4A
memberAttrName
value-tag
starts member attribute: "x-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of "x-dimension" keyword

x-dimension
x-dimension
value
name of 1st collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0003

value
value of 1st collection member attribute

0x4A
memberAttrName
value-tag
starts member attribute: "y-dimension"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x000B

value-length
length of the "y-dimension" keyword

y-dimension
y-dimension
value
name of 2nd collection member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0005

value
value of 2nd collection member attribute

0x37
endCollection
value-tag
end of the 1setOf collection value

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

17 Appendix C: Encoding Example of Collection containing 1setOf XXX attribute

The overall structure of the collection value can be pictorially represented as:

"wagons" =

{
"colors" = red, blue;

"sizes" = 4, 6, 8

}

A simplified view of the encoding would look like this:

Table 10 - Overview Encoding of collection with 1setOf value
Tag Value
Name
Value

begCollection
wagons
""

memberAttrName
""
colors

keyword
""
red

keyword
""
blue

memberAttrName
""
sizes

integer
""
4

integer
""
6

integer
""
8

endCollection
""
""

Table 11 - Example Encoding of collection with 1setOf value
Octets
Symbolic Value
Protocol field
comments

0x34
begCollection
value-tag
beginning of the "wagons" collection attribute

0x0005

name-length
length of (collection) attribute name

wagons
wagons
name
name of (collection) attribute

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

0x4A
memberAttrName
value-tag
starts a new member attribute: "colors"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0006

value-length
length of "colors" keyword

colors
colosr
value
value is name of 1st member attribute

0x44
keyword type
value-tag
keyword type

0x0000

name-length
0 indicates 1setOf wagons

no name (since name-length was 0)

0x0004

value-length

blue
blue
value
value of 1st member attribute

0x44
keyword type
value-tag
keyword type

0x0000

name-length
0 indicates 1setOf wagons

no name (since name-length was 0)

0x0003

value-length

red
red
value
value of 1st member attribute

0x4A
memberAttrName
value-tag
starts a new member attribute: "sizes"

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0005

value-length
length of "length-avail" keyword

sizes
sizes
value
Name of 2nd member attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf wagons

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0004

value
1st value for 1SetOf integer attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0006

value
2nd value for 1SetOf integer attribute

0x21
integer type
value-tag
attribute type

0x0000

name-length
0 indicates 1setOf

no name (since name-length was 0)

0x0004

value-length
length of an integer = 4

0x0008

value
3rd value for 1SetOf integer attribute

0x37
endCollection
value-tag
end of the collection

0x0000

name-length
defined to be 0 for this type, so part of 1setOf

no name (since name-length was 0)

0x0000

value-length
defined to be 0 for this type

no value (since value-length was 0)

18 Appendix D: Full Copyright Statement

Copyright (C) The Internet Society (1998,1999,2000). All Rights Reserved

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

deBry, Hastings, Herriot, Ocke, Zehler
Expires: November 4, 2000
[page 1]
PAGE
deBry, Hastings, Herriot, Ocke, Zehler
Expires: November 4, 2000
[page 32]

