
Scan Api Bridging In Pappl

GSoC ‘23 and ‘24

The Architecture

Creating ESCL Endpoints
● Go through the MOPRIA Scan Specifications to know the

endpoints.
● HTTPS/eSCL endpoints needed for

1) /{root}/ScannerCapabilities

2) /{root}/ScannerStatus

3) /{root}/ScanBufferInfo

4) /{root}/ScanJobs and many more

ESCL endpoints
Implemented under pappl/

client.c under
HTTP_STATE_GET and
HTTP_STATE_POST

Creating XML Parser
● Since eSCL communications is essentially through XML we

would have to create a XML Parser that can sort of
interpret various details and call the required
functions.

● The XML parser is based on regex matching done using
patterns as demonstrated in MOPRIA Scan Specifications.

● Divided the main function into many branched out
functions for micro features.

XML Parser
Interpret eSCL
communications

Dummy Driver For Emulation
● Add a dummy driver (initially xml files, later turned to

text files) that emulates a driver fetching data from a
scanner.

● The following scan driver emulation files had to be
added:

1) ScannerStatus

2) ScannerCapabilites

3) ScannerBufferInfo

Dummy Driver
Example of Initial Buffer

Info file

Upstream
movement of Api

Bridging

Upstreaming
● Addition of pwg-scanner.c in the testsuite directory,
● Updating testpappl.c to add a "scan" test to validate

scanning.
● Update testmainloop.c to call the new scanner APIs prior to

papplMainloop.
● Update the Pappl-Retrofit repository to retrofit the SANE

Drivers.
● Final Upstreaming should finish by the end of OSPP Open

Source Program.

Presentation Of Scan API Project at Various Conferences
1) Ubuntu Summit 2023
2) Opportunity Open Source, India 2023 and 2024
3) FOSDEM 2025

