Proposal to Printer Working Group

Revisions to “PrtMagicCookie” Proposal

The idea put forth in David Kellerman’s earlier prtMagicCookie proposal was to simplify the mechanics of instrumenting the channels group for usability with minimal object additions. The prtMagicCookie string was a way to further extend the object type “prtChannelType” with whatever information was necessary to actual utilize a channel from a remote entity., i.e., if a channel type description was “ a bidirectional TCP port used for print job delivery”, then the prtMagicCookie string would contain the actual TCP port number upon which such a connection could be built. The prtMagicCookie was basically put forth as a way to include in one object any parameterization that might be required to actually utilize a particular prtChannelType.

At the New York meeting of the PWG, the attendees decided that the prtMagicCookie string should be both human readable, as well as unambiguously machine parsable. This proposal seeks to elaborate on the earlier prtMagicCookie proposal with a mechanism to allow both of these features to be supported by the prtMagicCookie string.

For purposes of clarity, I would like to suggest that the data type used to represent the prtMagicCookie string be a “DisplayString” object type. This forces implementers to make sure that this string is displayable and human readable. In addition, I would like to propose that a prtMagicCookie “grammar’ be used to describe the contents of this string. The rationale behind the grammar is to solve the machine-parsability requirement decided on previously. This cookie grammar or syntax would also be human readable and could be stored in the MIB as an additional object within the channel group, or, it could be a requirement for registering channel types and associated applications in a global registry managed by IANA or other sanctioned organization.

I would like to propose two solutions to the grammar/syntax string. The first proposal would be that we use a standard C language scanf/printf format string to describe the contents of the prtMagicCookie string. As an example, to describe an implementation of LPD within an agent that implements several control file extensions such as Sun or Xerox, the following syntax string could be used:

		“Line Printer Daemon (LPD) Vendor %s Version %d Port %d Options %s”

In this example, an automated job delivery client attempting to discover how to send jobs to LPD would know that LPD is supported through the prtChannelType. It could then read the syntax string and discover which vendor’s implementation is being used, the version number, the TCP port used for this implementation, as well as any extended control file options not specified by the RFC 1179 standard; this options string could consist of control file option letters like “W,Z,X” or some other string. Likewise, a

Novell print server could utilize a grammar string like:

		“Novell PSERVER %s Fileserver %s Options %s”

This would give potential print clients the PSERVER name for this printer, as well as a preferred file server on which the queues for this PSERVER reside. Other options could also be specified as well in the “Options” string.

The syntax/grammar specification would be owned by the vendor or organization that is registering the channel type. Again, this proposal does not suggest whether this syntax/grammar string is implemented as an object within the MIB, or as a required field in a channel type registration form. The format of the grammar/syntax string can be taken verbatim from the standard ANSI C language description of the printf/scanf format descriptor.

Another descriptor format that could be used would be a Backus-Naur Format (BNF) syntax for the grammar/syntax string. This is somewhat more powerful than the previous print/scanf format, and allows optional fields to be inserted in the string. Instead of BNF, a regular expression could be used/specified to describe the contents of the DisplayString fields. In my opinion, the C language printf/scanf format string would be easier to implement and meet most of our requirements.

