
Simple High Performance Transport - SHPT
(Draft)

Revision 0.4c

March 23, 1998

Shigeru Ueda

Takashi Isoda

Akihiro Shimura

Contact e-mail address: oid3-1394@pure.cpdc.canon.co.jp

CANON INC.

Simple High Performance Transport SHPT Draft 0.4c, March 23, 1998

Page 9

5. Simple High Performance Transport(SHPT) Model (informative)

Note 1: This document focuses how the unordered model defined by the SBP-2 provides efficient bi-

directional communication. This document also describes a simple method to manage the linked

list of ORB in the initiator that utilizes the unordered model.

Note 2: Multiple service channels are assumed to be provided via utilizing multiple WRITE/READ

queue pairs or some other means. Extended reconnect time out is also assumed to be provided via

the mechanism introduced by the imaging profile or some other means.

Note 3: The command and status related to device control are not included in this document to focus on

the bi-directional communication.

Simple High Performance Transport (SHPT) defines a small command set and a behavior model on top

of the Serial Bus Protocol 2 (SBP-2). The SBP-2 is a transport protocol defined for IEEE Std 1394-

1995, Standard for a High Performance Serial Bus. The SHPT provides full duplex communication

capability between an initiator device and a target device.

This clause describes components of the SHPT model. In addition to the information in this clause, users

of this document should also be familiar with the SBP-2 and its normative references.

The SHPT uses the data exchange mechanism provided by the SBP-2. The command block ORB

(operation request block) works as a data transfer request for both direction as specified by the SBP-2.

The SHPT introduces a queuing model on the target to queue those requests. In order to achieve full

duplex communication, the SHPT utilizes the unordered model defined by the SBP-2, and controls the

flow of those requests by using each queue. The unsolicited status defined by the SBP-2 is used as a

request indication for an asynchronous data transfer from the target to the initiator.

The SHPT provides full duplex communication capability over single login with small additional

resources by adopting the flow control based on the requests rather than on the transporting data itself.

The benefits of the SBP-2 like high performance and low overhead are achieved via the features of SBP-

2 like shared memory model and listed execution. The SHPT also inherits these benefits by relaxing the

synchronization between both ends with the queuing model.

5.1 Target Model

Figure 1 illustrates an example block diagram of a command block agent for the SHPT target. The

command block agent contains one command fetch agent, two command pre-fetch queues, called

WRITE queue and READ queue, and two execution agents, called WRITE execution agent and

SHPT Draft 0.4c, March 23, 1998 Simple High Performance Transport

Page 10

READ execution agent connected to the WRITE queue and the READ queue respectively.

The command fetch agent fetches the normal command block ORB's in order. When the command fetch

agent fetches the normal command block ORB, the command fetch agent examines the parameter

specified in the command_block field of the command block ORB. The fetch agent dispatches the

command block ORB to either of the WRITE queue or READ queue according to the parameter. All

WRITE commands are dispatched to the WRITE queue, and all READ commands are dispatched to

the READ queue. The WRITE execution agent and READ execution agent execute the commands

queued in the WRITE queue and READ queue respectively.

Figure 1 - Target Model

Each execution agent executes the dispatched command in the connected queue in order and

independently of other agent. Each execution agent executes the data transfer associated with the

command according to the parameters specified in the command.

The target stores a status block in the initiator's memory according to the value of the notify bit of the

command block ORB after executing the command as specified by the SBP-2. Each execution agent

shall store status_block in order within each execution agent.

The fetch agent (and execution agents) shall not refer to the next_ORB field of the ORB's in the

initiator's memory that is already fetched and already in either pre-fetch queues except for the ORB

contains null next_ORB pointer.

Command
Fetch Agent

WRITE
Execution Agent

READ
Execution Agent

WRITE queue

WRITE
Command

READ
Command

Status
Bus Interface

1394
Interface

READ queue

Data
Buffers

for receive

Data
Buffers
for send

Simple High Performance Transport SHPT Draft 0.4c, March 23, 1998

Page 11

Note: The next_ORB field of the backward ORB's in the initiator's memory may not be valid pointer any

longer since the pointed ORB may already be completed by the unordered execution.

When the target has data to be sent to the initiator and no READ command is available from the initiator,

the target may store a data available status in the initiator memory. This status block may be either a

normal status_block or an unsolicited status defined by the SBP-2. This status may be used as an data

indication from the target by the initiator.

5.2 Initiator Model

The initiator of the SHPT has two i/o request queues as illustrated below.

SHPT/SBP-2 unordered model

write i/o request queue

Status

1394 Bus

linked list of ORB's

read i/o request queue

Data
Buffers

for
write

Data
Buffers

for
read

Figure 2 - Initiator Model

The initiator manages a constraint on appending a new task to a current task set.

The WRITE queue and READ queue in the target queue the command ORB’s destined to the WRITE

execution agent and READ execution agent respectively. The initiator restricts to append a new task

destined to the each execution agent in the manner that the number of the commands destined to each

execution agent in the task set does not exceed the available depth of each queue in the target.

In order to manage this constraint, the initiator retrieves the depth of the each queue from the target

before starting a communication.

The initiator creates a command that specifies the WRITE execution agent as a destination in case of

the data transfer from the initiator to the target. The initiator creates a command that specifies the READ

SHPT Draft 0.4c, March 23, 1998 Simple High Performance Transport

Page 12

execution agent as a destination in case of the data transfer from the target to the initiator.

The initiator becomes aware that the target has consumed the content of each queue by receiving the

status block specified by the SBP-2 corresponding to the command destined to each queue.

The initiator may free the completed ORB indicated by the status block, and complete i/o request in the

head of the write i/o request queue or the read i/o request queue depending on the information in the

status and remove the i/o request from the queue.

Note: The initiator does not need to update the next_ORB field of the ORB pointing the completed ORB

in the current task set, since the target never refers the field retroactively.

5.3 Error Recovery

The initiator may detect that the target has aborted the execution of a certain task and stopped processing

of succeeding tasks in the list via status block or agent state register. When the initiator detects this case,

the initiator shall discard all ORB's in the current task set and re-initiate fetch agent with recreated linked

list of ORB from the contents of write i/o request queue and read i/o request queue. The initiator shall

maintain relationship between i/o request in each queue and corresponding sequence identifier. The

initiator shall also maintain the contents of the buffer associated with each request.

The target shall be responsible to prohibit to duplicate processing of the content of each i/o request. In

order to do this, the target maintains the sequence identifier and buffer offset currently processing. After

the target aborted the execution of a certain task and re-initiated by the initiator, the target shall examine

the sequence identifier in new ORB. If the target finds from the sequence identifier that the request is

already executed, the target may complete the request without execution. If the target finds from the

sequence identifier that the request was processed intermediately, the target may continue processing

from the point indicated by the buffer offset.

