
Distribution-Independent Printer 
Driver Packages without LSB

Till Kamppeter, Openprinting



 2

• Years ago, we have agreed on to use the LSB to create 
distribution-independent printer driver packages

 LSB describes common programming interfaces of the currently 
released enterprise distros

 Most distributions have compatibility meta packages to let LSB-based 
software packages to run on them

 Printing-related interfaces got added to the LSB

• Debian dropped LSB support, dropping its meta-package
 https://lwn.net/Articles/658809/
 Ubuntu lost support, too as they sync the meta package
 Ubuntu will do temporary solution for 16.04 LTS only
 To few software vendors make use of the LSB (probably only Epson 

with their printer drivers)
 LSB very complex, therefore LSB compatibility awkward to maintain

The Problem

https://lwn.net/Articles/658809/


 3

Possible Solutions

• Best would be: IPP Everywhere now and for every printer, 
do away with drivers at all!

• We probably still need distribution-independent driver 
packages at least for some time, but

 LSB not available in all distros, and perhaps soon fading away then
 LSB too complex for manufacturers to develop under
 Needed: Simpler way for making distribution-independent binaries, 

ideally without need of compatibility meta package and no complex 
standard description

 Should be easy to implement to attract more printer manufacturers

• Also possible: PPD-only package for PostScript, PCL (as 
Ricoh does), or other known PDL



 4

Static linking

• Easy to install

• Large executables
• Security bugs in built-in libraries do not get fixed
• Executable cannot dynamically link libraries at run-time
• Especially libc links dynamic options at run-time, with libc 

statically linked only objects of that libc can get linked
• You cannot simply statically link existing code, it often 

needs to get adapted



 5

Replace libc by musl

• http://www.libc-musl.org/
• musl replaces libc
• musl itself does not dynamically link anything, allowing for 

totally statically linked executables
• Single binaries running on any machine with the 

appropriate processor architecture
• musl is under permissive MIT license

• Code needs to get prepared for static linking, but probably 
not different tocode using libc

http://www.libc-musl.org/


 6

Partial static linking

• Never statically link libc
• Statically linking libstdc++ is safe
• Be careful also with X11 and openGL libraries
• Link everything else statically
• http://blog.sagargv.com/2014/09/on-building-portable-linux

-binaries.html
• More links on this and building instructions in the blog 

post

http://blog.sagargv.com/2014/09/on-building-portable-linux-binaries.html
http://blog.sagargv.com/2014/09/on-building-portable-linux-binaries.html


 7

Ship with libraries

• Drop in the library files your application needs to the same 
directory as the binary and include $ORIGIN in the rpath 
when linking.

• Use automatic tool, like CDE: 
http://www.pgbovine.net/cde.html

• No compatibility problem with static linking
• No license violation in closed-source drivers
• No “dependency hell”

http://www.pgbovine.net/cde.html


 8

What to do?

• Should we require one of the show methods?
• Or should we leave to the individual printer vendors which 

method to apply, only require distro-independent 
package?

• Should we stay with RPM/DEB packaging or make tarballs 
of the binary files dropping them into the standard 
locations of CUPS?


	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

