
Ghostscript and MuPDF Status
OpenPrinting Summit April 2016

Michael Vrhel, Ph.D.
Artifex Software Inc.

San Rafael CA

Outline

Ghostscript overview

What is new with Ghostscript

MuPDF overview

What is new with MuPDF

MuPDF vs Ghostscript

MuJS, GSView

The Basics

Ghostscript is a document conversion and rendering engine.

Written in C ANSI 1989 standard (ANS X3.159-1989)

Essential component of the Linux printing pipeline.

Dual AGPL/Proprietary licensed. Artifex owns the copyright.

Source and documentation available at www.ghostscript.com

http://www.ghostscript.com/

Graphical Overview

Ghostscript
Graphics Library

PDF 1.7 XPS
PostScript

Level 3
PCL5e/c with
GL/2 and RTL PCLXL

High level
Output drivers:

PSwrite PDFwrite
XPSwrite Custom

Printer drivers:
Inkjet
Laser
etc.

Raster output API:
TIFF

JPEG
CUPS

Devices

Understanding devices is a major key to understanding Ghostscript.

Devices can have high-level functionality. e.g. pdfwrite can handle text, images,
patterns, shading, fills, strokes and transparency directly.

Graphics library has “default” operations. e.g. text turns into bitmaps, images
decomposed into rectangles.

In embedded environments, calls into hardware can be made.

Raster devices require the graphics library to do all the rendering.

Relevant Changes to GS since last meeting….

A substantial revision of the build system and GhostPDL directory structure (9.18)

GhostPCL and GhostXPS "products" are now built by the
Ghostscript build system "proper" rather than having their own builds (9.18)

New method of internally inserting devices into the device chain developed.
Allows easier implementation of “filter” devices (9.18)

Implementation of "-dFirstPage"/"-dLastPage" with all input languages (9.18)

Relevant Changes to GS since last meeting….

New custom PJL equivalents for pdfmark and setdistillerparams.
Added to allow pdfwrite configuration for PDF/A output from GhostPCL (9.19)
See: ghostpdl/doc/VectorDevices.htm#PXL_IN

Metadata pdfmark implemented. Allows user to specify an XMP stream
to be written to the Catalog of the PDF file. (9.19)
See: ghostpdl/doc/VectorDevices.htm#Extensions

Experimental, rudimentary raster trapping added to Ghostscript (9.19)
See: ghostpdl/doc/Devices.htm#TIFF_trapping

The halftone threshold array generation tools (toolbin/halftone) improved
Allow folding the transfer function into the threshold array.
Support for minimum dot size and shape with stochastic arrays. (9.19)

Relevant Changes to GS since last meeting….

Optimization of generation of ICC profiles from PS CIE color spaces (9.19)

-dUsePDFX3Profile with -dNumRenderingThreads (9.19)

Introduction of gproof device for use with MuPDF/GSView (9.19)

What is MuPDF?

• A Core Set of Libraries Focused on PDF
Entirely written in C, very portable, small ROM footprint
 Windows/Linux/MacOS/iOS/Android/BB10/QNX/others

• Example Tools:
 Simple viewers for Linux/Android/MacOS/iOS/Windows/WinRT.
 Command line tools:

• Rendering PDF pages
• Creating PDF pages
• Merging PDF content
• Extracting pages
• Decompressing content streams
• Extracting resources
• Repairing files

• Licensing. Dual AGPL/Proprietary licensed. Artifex owns the copyright.

Features of MuPDF

Other input formats:

 XPS/OXPS

 CBZ/JPEG/PNG/TIFF/EPUB (version 2 DRM-free)

Device interface

 Separates interpretation from rendering

 Allows display lists

 Includes PWG raster device

Features of MuPDF

Clever memory management

 Caching of objects (both raw and decoded)
 Memory scavenging (throw objects away just in time)

Multi-core/threading support

 Not tied to any one threading implementation
 All we need is locks

 Interpretation happens on one thread, rendering can happen on many.
 Thumbnails rendered in the background.
 Banded rendering of pages.
 Resources decoded on one thread can be used by others.

Features of MuPDF

Form filling

 Ability to save files back with data in them.

JavaScript support

 Not tied to any one JavaScript implementation

 Thin veneer to Googles 'v8' engine supplied

 MuJS is our own small JavaScript library (http://www.mujs.com/)

Features of MuPDF

Reflow View

 Pages extracted to HTML (text and images).

 Rudimentary layout detection (tables, indents, etc.)

Digital Signatures

 Verify signatures

 Sign documents

 Re-sign documents after form filling

Relevant Changes to MuPDF since last
meeting….

Significant EPUB improvements (1.8)
 User style sheets
 GIF Image
 Table of Contents
 CJK text

Bare bones OpenGL-based desktop viewer added (1.8)

64-bit file support (1.8)

Ghostscript proofing mode (1.8)

Output Mono & Color PCL content (1.8)

Relevant Changes to MuPDF since last
meeting….

New low-level Java interface for desktop and Android (1.9)

Bidirectional layout for Arabic and Hebrew scripts (1.9)

“create” command line for creating PDF files from scratch (1.9)
 Reads content stream from text file
 Includes font and image resource embedding

“draw” command line improvements (1.9)
 multi-threaded operation
 low-memory mode

“run” command line (1.9)
 Runs JavaScript scripts with MuPDF bindings
 Supports ECMAScript 5 in strict mode
 Provides access to most of the MuPDF library
 “run” by itself provides an interactive prompt

Simple JavaScript Draw Example

 var doc, page, pixmap

 var doc = new mupdf.Document("pdfref17.pdf")
 print(doc, doc.countPages())
 var page = doc.loadPage(1144)
 print(page, page.bound())
 var pixmap = page.toPixmap(mupdf.Identity, mupdf.DeviceRGB)
 pixmap.saveAsPNG("out.png", false)

 pixmap = new mupdf.Pixmap(mupdf.DeviceRGB, page.bound())
 pixmap.clear(255)
 var device = new mupdf.DrawDevice(pixmap)
 page.run(device, mupdf.Identity)
 pixmap.saveAsPNG("out2.png", false)

Simple JavaScript Draw Example

Simple JavaScript PDF Creation Example

 var pdf = new mupdf.PDFDocument()
 var trailer = pdf.getTrailer()
 var root = trailer.Root
 var pages = root.Pages

 var contents = pdf.addStream("0.5 0.5 1 rg 10 10 m 90 10 l 90 90 l h f")

 var page = pdf.addObject({ Type: 'Page', MediaBox: [0, 0, 500, 500],
 Rotate: 0, Contents: contents, Resources: null, Parent: pages})

 pages.Count = 1
 pages.Kids = [page]

 trailer.Info = { Author: "(JavaScript)", Title: "(Example)“ }
 print(trailer)

 pdf.save("out.pdf")

Simple JavaScript PDF Creation Example

Simple JavaScript Create Example
With Resources

 var pdf = new mupdf.PDFDocument()
 var trailer = pdf.getTrailer()
 var root = trailer.Root
 var pages = root.Pages

 var courier = pdf.addSimpleFont(new mupdf.Font(“courier.ttf"))
 var arial = pdf.addSimpleFont(new mupdf.Font(“arial.ttf"))
 var lena = pdf.addImage(new mupdf.Image("Lena.png"))

 var subdoc = new mupdf.Document("pdfref17.pdf")
 var subpage = subdoc.loadPage(1145)
 var pixmap = subpage.toPixmap([0.2,0,0,0.2,0,0], mupdf.DeviceGray)
 var thumb = pdf.addImage(new mupdf.Image(pixmap))

Simple JavaScript Create Example
With Resources Continued

 var contents = new mupdf.Buffer()
 contents.writeLine("0.5 0.5 1 rg")
 contents.writeLine("10 10 m 90 10 l 90 90 l h f")
 contents.writeLine("0 g")
 contents.writeLine("BT /Ar 16 Tf 10 30 TD (Hello, world!) Tj ET")
 contents.writeLine("BT /Co 16 Tf 10 10 TD (Goodbye, cruel world!) Tj ET")
 contents.writeLine("q 150 0 0 150 100 100 cm /Im0 Do Q")
 contents.writeLine("q 150 0 0 150 100 250 cm /Im1 Do Q")

 var resources = pdf.addObject({ Font: { Co: courier, Ar: arial },
 XObject: { Im0: lena, Im1: thumb }})

 var page = pdf.addPage([0,0,500,500], 0, contents, resources)
 pdf.insertPage(-1, page)

 trailer.Info = { Author: "(JavaScript)", Title: "(Example)“ }

 pdf.save("out.pdf")

Simple JavaScript Create Example
With Resources Continued

Ghostscript or MuPDF?

http://twiki.ghostscript.com/do/view/Ghostscript/GhostscriptOrMuPDF

For most printing applications - use Ghostscript.

 Postscript
 PCL
 Spot colors
 Extreme level of color management control
 Massive range of output devices

Ghostscript or MuPDF?

For screen use or embedded devices - use MuPDF.

 Fast
 PDF Parser in C.
 AA Rendering designed in from the ground up.
 Small
 Much smaller ROM footprint.
 Simple
 No complex garbage collector to maintain
 Small set of dependent libraries
 Simpler to port
 Interactive features
 More suitable for building viewers
 Searching
 Zooming
 Form filling
 Transitions

MuJS

Lightweight implementation of the JavaScript language in a library

MuJS implements ECMAScript 5

Written in portable C

Runs on all flavors of Linux and Windows, on mobile devices (such
as Android and iOS), embedded microprocessors (such as the
Beagle board and Raspberry Pi), etc.

The source contains around 10'000 lines of C.

Under Linux, the compiled library takes 180kB if optimized for size,
and 260kB if optimized for speed.

GSView

A user friendly viewer for Postscript, PDF, XPS, EPUB1, CBZ, JPEG,
and PNG

GSView leverages the viewing capabilities of MuPDF, along with the
conversion capabilities of Ghostscript to provide fast and high quality
on-screen experience, and high quality export and conversion features.

GSView includes form filling, annotation display and print proofing

GSView

Conversion to SVG, PCL-XL, XPS, Text, HTML, XML, Postscript,
Image formats, PDF/X PDF/A, Linearized PDF

Specification of ICC Output intent for PDF/X formats

Copy of text / images from GSView into other applications

Vector extraction of page regions

Current work on PDF creation, adding of annotations, page merging from
multiple PDFs, adding text, graphic and image content to existing PDFs

GSView gproof example

Altona Visual Test file rendered with
SWOP CMYK and sRGB

GSView gproof example

Altona Visual Test file rendered with
SWOP CMYK and Wide Gamut RGB

GSView gproof example

Altona Visual File without black separation

GSView gproof example

Altona Visual File with only the orange separation

Bug Tracking

http://bugs.ghostscript.com/

More Information

Repositories located at
 git://git.ghostscript.com

MuPDF and Ghostscript discussions on IRC freenode #ghostscript channel

Additional information at www.mupdf.com www.ghostscript.com www.mujs.com

http://www.mupdf.com/
http://www.ghostscript.com/
http://www.mujs.com/

	Ghostscript and MuPDF Status�OpenPrinting Summit April 2016
	Outline
	The Basics
	Graphical Overview
	Devices
	Relevant Changes to GS since last meeting….
	Relevant Changes to GS since last meeting….
	Relevant Changes to GS since last meeting….
	What is MuPDF?
	Features of MuPDF
	Features of MuPDF
	Features of MuPDF
	Features of MuPDF
	Relevant Changes to MuPDF since last meeting….
	Relevant Changes to MuPDF since last meeting….
	Simple JavaScript Draw Example
	Simple JavaScript Draw Example
	Simple JavaScript PDF Creation Example
	Simple JavaScript PDF Creation Example
	Simple JavaScript Create Example�With Resources
	Simple JavaScript Create Example�With Resources Continued
	Simple JavaScript Create Example�With Resources Continued
	Ghostscript or MuPDF?
	Ghostscript or MuPDF?
	MuJS
	GSView
	GSView
	GSView gproof example
	GSView gproof example
	GSView gproof example
	GSView gproof example
	Bug Tracking
	More Information

