Distribution-Independent Printer
Driver Packages without LSB

Till Kamppeter, Openprinting

The Problem

Years ago, we have agreed on to use the LSB to create
distribution-independent printer driver packages

LSB describes common programming interfaces of the currently
released enterprise distros

Most distributions have compatibility meta packages to let LSB-based
software packages to run on them

Printing-related interfaces got added to the LSB

Debian dropped LSB support, dropping its meta-package
https://lwn.net/Articles/658809/
Ubuntu lost support, too as they sync the meta package
Ubuntu will do temporary solution for 16.04 LTS only

To few software vendors make use of the LSB (probably only Epson
with their printer drivers)

LSB very complex, therefore LSB compatibility awkward to maintain

THE

2 T JLINUX

FOUNDATION

https://lwn.net/Articles/658809/

Possible Solutions

Best would be: IPP Everywhere now and for every printer,
do away with drivers at all!

We probably still need distribution-independent driver
packages at least for some time, but

LSB not available in all distros, and perhaps soon fading away then
LSB too complex for manufacturers to develop under

Needed: Simpler way for making distribution-independent binaries,
ideally without need of compatibility meta package and no complex
standard description

Should be easy to implement to attract more printer manufacturers

Also possible: PPD-only package for PostScript, PCL (as
Ricoh does), or other known PDL

THE
: LJLINUX

ON

L]

Easy to install

Large executables
Security bugs in built-in libraries do not get fixed
Executable cannot dynamically link libraries at run-time

Especially libc links dynamic options at run-time, with libc
statically linked only objects of that libc can get linked

You cannot simply statically link existing code, it often
needs to get adapted

I Replace libc by musli

http://www.libc-musl.org/
musl replaces libc

musl itself does not dynamically link anything, allowing for
totally statically linked executables

Single binaries running on any machine with the
appropriate processor architecture

musl is under permissive MIT license

Code needs to get prepared for static linking, but probably
not different tocode using libc

http://www.libc-musl.org/

I Partial static linking

Never statically link libc

Statically linking libstdc++ is safe

Be careful also with X11 and openGL libraries
Link everything else statically

http://blog.sagargv.com/2014/09/on-building-portable-linux
-binaries.html

More links on this and building instructions in the blog
post

http://blog.sagargv.com/2014/09/on-building-portable-linux-binaries.html
http://blog.sagargv.com/2014/09/on-building-portable-linux-binaries.html

I Ship with libraries

Drop in the library files your application needs to the same
directory as the binary and include $ORIGIN in the rpath
when linking.

Use automatic tool, like CDE:
http://lwww.pgbovine.net/cde.html

No compatibility problem with static linking
No license violation in closed-source drivers
No “dependency hell”

http://www.pgbovine.net/cde.html

I What to do?

Should we require one of the show methods?

Or should we leave to the individual printer vendors which

method to apply, only require distro-independent
package?

Should we stay with RPM/DEB packaging or make tarballs
of the binary files dropping them into the standard
locations of CUPS?

	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

