
Distribution-Independent Printer
Driver Packages without LSB

Till Kamppeter, Openprinting

 2

• Years ago, we have agreed on to use the LSB to create
distribution-independent printer driver packages

 LSB describes common programming interfaces of the currently
released enterprise distros

 Most distributions have compatibility meta packages to let LSB-based
software packages to run on them

 Printing-related interfaces got added to the LSB

• Debian dropped LSB support, dropping its meta-package
 https://lwn.net/Articles/658809/
 Ubuntu lost support, too as they sync the meta package
 Ubuntu will do temporary solution for 16.04 LTS only
 To few software vendors make use of the LSB (probably only Epson

with their printer drivers)
 LSB very complex, therefore LSB compatibility awkward to maintain

The Problem

https://lwn.net/Articles/658809/

 3

Possible Solutions

• Best would be: IPP Everywhere now and for every printer,
do away with drivers at all!

• We probably still need distribution-independent driver
packages at least for some time, but

 LSB not available in all distros, and perhaps soon fading away then
 LSB too complex for manufacturers to develop under
 Needed: Simpler way for making distribution-independent binaries,

ideally without need of compatibility meta package and no complex
standard description

 Should be easy to implement to attract more printer manufacturers

• Also possible: PPD-only package for PostScript, PCL (as
Ricoh does), or other known PDL

 4

Static linking

• Easy to install

• Large executables
• Security bugs in built-in libraries do not get fixed
• Executable cannot dynamically link libraries at run-time
• Especially libc links dynamic options at run-time, with libc

statically linked only objects of that libc can get linked
• You cannot simply statically link existing code, it often

needs to get adapted

 5

Replace libc by musl

• http://www.libc-musl.org/
• musl replaces libc
• musl itself does not dynamically link anything, allowing for

totally statically linked executables
• Single binaries running on any machine with the

appropriate processor architecture
• musl is under permissive MIT license

• Code needs to get prepared for static linking, but probably
not different tocode using libc

http://www.libc-musl.org/

 6

Partial static linking

• Never statically link libc
• Statically linking libstdc++ is safe
• Be careful also with X11 and openGL libraries
• Link everything else statically
• http://blog.sagargv.com/2014/09/on-building-portable-linux

-binaries.html
• More links on this and building instructions in the blog

post

http://blog.sagargv.com/2014/09/on-building-portable-linux-binaries.html
http://blog.sagargv.com/2014/09/on-building-portable-linux-binaries.html

 7

Ship with libraries

• Drop in the library files your application needs to the same
directory as the binary and include $ORIGIN in the rpath
when linking.

• Use automatic tool, like CDE:
http://www.pgbovine.net/cde.html

• No compatibility problem with static linking
• No license violation in closed-source drivers
• No “dependency hell”

http://www.pgbovine.net/cde.html

 8

What to do?

• Should we require one of the show methods?
• Or should we leave to the individual printer vendors which

method to apply, only require distro-independent
package?

• Should we stay with RPM/DEB packaging or make tarballs
of the binary files dropping them into the standard
locations of CUPS?

	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

