
Ghostscript and MuPDF Status
OpenPrinting summit April 2013

Michael Vrhel, Ph.D.
Artifex Software Inc.

San Rafael CA

Outline

Ghostscript overview

What is new and what is coming…

Color Architecture Details

MuPDF

The Basics

Ghostscript is a document conversion and rendering engine.

Written in C ANSI 1989 standard (ANS X3.159-1989)

Essential component of the Linux printing pipeline.

Dual AGPL/Proprietary licensed. Artifex owns the copyright.

Source and documentation available at www.ghostscript.com

Graphical Overview

Ghostscript
Graphics Library

PDF 1.7 XPS
PostScript

Level 3
PCL5e/c with
GL/2 and RTL PCLXL

High level
Output drivers:

Pswrite PDFwrite
XPSwrite Custom

Printer drivers:
Inkjet
Laser
etc.

Raster output API:
TIFF

JPEG
CUPS

Devices

Understanding devices is a major key to understanding ghostscript.

Devices can have high-level functionality. e.g. pdfwrite can handle text, images,
patterns, shading, fills, strokes and transparency directly.

Devices may be set up to handle only certain high-level operations.

Graphics library has “default” operations. e.g. text turns into bitmaps, images
decomposed into rectangles.

In embedded environments, calls into hardware can be made.

Raster devices require the graphics library to do all the rendering.

Relevant Changes to GS since last meeting….

Ghostscript can now use output intents defined in PDFs by using the

"-dUsePDFX3Profile" command line option. (9.06)

tiffsep/tiffsep1/psdcmyk: Support for large numbers of separations improved.
Removed reliance on the compressed color encoding. (9.06)

Ghostscript and GhostPDL distributed under the GNU Affero General Public
License (AGPL). (9.07)

Ghostscript now has the option to be built as thread safe. Note that not all
devices are thread safe. (9.07)

Relevant Changes to GS since last meeting….

The pdfwrite devices now supports linearized (or optimized for fast web view)
output directly ("-dFastWebView") (9.07)

All interpreters now use Freetype by default to render all viable font types
(9.07)

Ghostscript extended to support file sizes >4Gb - in particular reading and
writing PDF files. (9.07)

Relevant Changes to GS since last meeting….

All CMYK devices can now support simulated overprint of spot colors using the
"-dSimulateOverprint" command line option (9.07)

Support for use of DeviceN ICC color profiles as the output profile with the
tiffsep and psdcmyk devices. (9.07)

Support for customized named color handling with DeviceN colors (9.07)

Support for black point compensation(9.07)

Relevant Changes to GS since last meeting….

Support for K preservation in CMYK to CMYK conversions. (9.07)

Support for DeviceLink profiles for graphic, image and text objects (9.07)

Support for custom color replacement (9.07)

Increased control in specifying color conversions as a function of object type (9.07)

LittleCMS updated to 2.4 (9.07)

Upcoming Changes to GS (release 9.08*)

Addition of option to interpret upcoming page on separate thread.

 -dBGPrint = true/false

Detection of gray only content on page.

 -dGrayDetection=true/false

Optimizations that avoid transparency operations in bands that contain no
transparency during display list playback.

Performance improvements with softmask handling.

XPSWrite device.

Rework of PDFWrite color to make use of ICC work flow.

Ghostscript Color Flow

ICC Profile ICC Profile

Device
Colors

Device
Colors

Gray
RGB
CMYK
N-Channel
Named Color

Color
Management

Module (CMM)

Linked transform
from source to
device color

Ghostscript Color Architecture

• Easy to interface different CMM with Ghostscript.

• ALL color spaces defined in terms of ICC profiles.

• Linked transformations and internally generated profiles cached.

• Easily accessed manager for ICC profiles.

• Easy to specify default profiles for DeviceGray, DeviceRGB and DeviceCMYK.

• Devices communicate their ICC profiles and have their ICC profile set.

• Operates efficiently in a multithreaded environment.

• Handles named colors with ICC named color profile or proprietary format.

• ICC Color management of Device-N colors or customizable spot handling.

• Includes object type (e.g. image, graphic, text) and rendering intent into the

 computation of the linked transform. Maintained with transparency.

Ghostscript Color Architecture

• Ability to override document embedded ICC profiles with Ghostscript’s default

 ICC profiles.

• Easy to specify unique source ICC profiles to use with CMYK and RGB graphic,

 image and text objects.

• Easy to specify unique destination ICC profiles to use with graphic, image and

 text objects.

• Easy to specify different rendering intents (perceptual, colorimetric, saturation,

 absolute colorimetric) and black point comp. for graphic, image and text objects.

• Control to force gray source colors to black ink only for devices that support

 black ink (e.g. CMYK).

Ghostscript Color Architecture

• Make use of PDF output intent ICC profile.

• Use an NCLR ICC output profile when rendering to a separation device.

• Make use of device link ICC profiles for direct mapping of source colors to the

device color space.

• Ability to make use of device link ICC profiles for retargeting from SWOP/Fogra
 standard color space to a specific device color space.

gsicc_init_buffer
gsicc_get_link

gsicc_release_link

gsicc_set_icc_directory
gsicc_set_profile

gsicc_init_device_profile
gsicc_set_gscs_profile
gsicc_get_gscs_profile

gsicc_profile_new
gsicc_get_profile_handle_buffer

Each thread could
have access to a

common ICC cache
or create its own

Graphics
Library

&
Interpreter

CMM

gscms_error
gscms_create
gscms_destroy
gscms_get_profile_handle_mem
gscms_get_profile_handle_file
gscms_release_profile
gscms_get_link
gscms_get_link_proof_devlink
gscms_get_name2device_link
gscms_release_link
gscms_transform_color_buffer
gscms_transform_color
gscms_transform_named_color
gscms_get_numberclrtnames
gscms_get_clrtname
gscms_get_input_channel_count
gscms_get_output_channel_count
gscms_get_profile_data_space

gsicc_set_device_profile
gsicc_set_device_profile_intent
gx_default_get_profile

Device

User profile directory

gsicc_set_icc_directory
gsicc_set_profile
gsicc_init_device_profile

TextProfile.icc

Device Profiles For
Various Rendering
Cases and Object
Types GraphicsProfile.icc

ImageProfile.icc

ICC Manager

Link Cache

Named Color Profile

DeviceN Profiles []

DefaultGray Profile

DefaultRGB Profile

DefaultCMYK Profile

Profile Cache

SoftMask Profiles

Source Profiles
(override)

default_gray.icc

default_rgb.icc

default_cmyk.icc

iccprofiles

lab.icc

sRGB.icc

s-gray.icc

ps_gray.icc

ps_rgb.icc

ps_cmyk.icc

gray_to_k.icc

ProofProfile.icc

DevicLinkProfile.icc

Link Cache

Link entries are reference counted.

Links are only released if we are at maximum number (or memory),
new request is made and a Ref Count is one.

Link Cache

Hash Code Ref Count Link Structure

gsicc_get_link(* pis, *input_colorspace, *output_colorspace, *rendering_params,
memory, include_softproof)

GRAPHICS LIBRARY

Compute hash of
input CS, output CS,
rendering params

Search cache for
match. If found
return link. If not
request new link

Hash Code
Hash Code
Hash Code

Ref Count
Ref Count
Ref Count

Ref Count Hash Code Link Structure

Link Structure
Link Structure
Link Structure

Named Colors

A look-up-table.

There is an ICC
profile format for
named colors.

In many applications,
a custom format
is used.

For some companies
this is their value
added.

Required Optional

Device Value

Device Value

Device Value

Device Value CIELAB

CIELAB

CIELAB

CIELAB

Pantone Uncoated Yellow

Toyo Red

Pantone Coated Green

Toyo Coated Blue

int gscms_transform_named_color(gsicc_link_t *icclink,
 float tint_value,
 const char *ColorName,
 gx_color_value device_values[]);

Missing from ICC profile is ability to use
tint information. We provide opportunity
for CMM to use. If it cannot, then alternate
tint transform is used.

Conversion of PS and PDF Color Spaces

• PS and PDF CIE color spaces are converted to ICC forms
 that the CMM can handle.

• PS mappings are all 1-way. Device to CIEXYZ or CIEXYZ to Device.

• Procedural mappings are sampled.

• Because of the multiple matrix operations and procedural mappings,
 some PS color spaces that do not include MLUTs will give rise to
 ICC profiles that do include MLUTs.

Example PS CIEABC

3x3
Matrix

3x3
Matrix

X

Y

Z

A

B

C

1f

2f

3f

1g

2g

3g

Profile Cache

• Ghostscript creates ICC profiles from PDF and PS CIE colorspace definitions
 (e.g. CalRGB, CIEABC, CIEDEFG)

• To avoid repeated creations, these profiles are cached based upon a hash
 code that is related to the resource ID.

• Cache is designed such that MRU item is at the top of the list.

• Profiles are only released if we are at maximum number (or memory),
 new request is made and a reference count is one.

Device N color spaces (PDF and PS)

• For Device N output, very simple to provide capability for N-color ICC profile.

• Many desire to have CM with CMYK and to pass additional spot colors unmolested.

• For DeviceN input color, XPS requires ICC profile. PDF and PS use an
 alternate tint transform.

• Architecture provides capability to define N-color ICC profile for DeviceN
 input colors to replace the alternate tint transform if desired.

• Named color custom support is possible for DeviceN source colors. Example
 implementation is given in gs\toolbin\color\named_color folder

Current Color Command Line Interface

Source Default Profiles
-sDefaultGrayProfile = my_gray_profile.icc
-sDefaultRGBProfile = my_rgb_profile.icc
-sDefaultCMYKProfile = my_cmyk_profile.icc
-sDeviceNProfile = my_devicen.icc
-sNamedProfile = my_namedcolor_profile.icc

Device Profile
-sOutputICCProfile = my_device_profile.icc

ICC Search Directory
-sICCProfilesDir = c:/my_iccprofiles/

Other Settings
-sProofProfile = my_proof_profile.icc
-sDeviceLinkProfile = my_link_profile.icc
-dRenderIntent = intent (0, 1, 2, 3)
-dOverrideICC = true/false
-dDeviceGrayToK = true/false
-dUseFastColor = true/false
-dBlackPtComp = 0 / 1
-dKPreserve = 0 / 1 / 2
-dSimulateOverprint = true/false
-dUsePDFX3Prole = int

-sICCOutputColors = “Cyan, Magenta, Yellow, Black, Orange, Violet"

Current Color Command Line Interface

Object Dependent Color Management

Object Dependent Color Management
Source Profiles

Source object dependent control achieved through the command line
Specification:

-sSourceObjectICC = filename

Contents of this file define what source profiles and settings should be used
with what objects

Key Profile Intent BlackPtComp Override BlackPreserve

Graphic CMYK cmyk_src_graphic.icc 0 1 0 0
Image CMYK cmyk_src_image.icc 0 1 0 0
Text CMYK cmyk_src_text.icc 0 1 0 0
Graphic RGB rgb_source_graphic.icc 0 1 0
Image RGB rgb_source_image.icc 0 1 0
Text RGB rgb_source_text.icc 0 1 0

Object Dependent Color Management
Destination Profiles

Destination object dependent control achieved through the command line

-sTextICCProfile = my_device_text_profile.icc
-sGraphicICCProfile = my_device_graphic_profile.icc
-sImageICCProfile = my_device_image_profile.icc

-dTextIntent = intent (0, 1, 2, 3)
-dGraphicIntent = intent (0, 1, 2, 3)
-dImageIntent = intent (0, 1, 2, 3)

-sTextBlackPt = 0/1
-sGraphicBlackPt = 0/1
-sImageBlackPt = 0/1

-sTextKPreserve = 0/1/2
-sGraphicKPreserve = 0/1/2
-sImageKPreserve = 0/1/2

Example: Object Dependent CM
 Default Profiles

Source file includes RGB and CMYK
Images, graphics and text.

Example: Object Dependent CM
 Source Profiles Vary

In this case, different ICC profiles
were specified to be used with RGB
and CMYK graphic, image, and text
objects via the Ghostscript command line
with –sSourceObjectICC = filename.

Graphic_CMYK cmyk_src_cyan.icc 0 1 0 0
Image_CMYK cmyk_src_magenta.icc 0 1 0 0
Text_CMYK cmyk_src_yellow.icc 0 1 0 0
Graphic_RGB rgb_source_red.icc 0 1 0
Image_RGB rgb_source_green.icc 0 1 0
Text_RGB rgb_source_blue.icc 0 1 0

Example: Object Dependent CM
 Source CMYK rendering intent varies

In this case, a special source
ICC profile for CMYK objects was
specified via the Ghostscript
command line. The profile was designed to
give radically different results in different
rendering intents.

Different rendering intents used for CMYK
graphics, images and text

Graphic_CMYK cmyk_src_renderintent.icc 0 1 0 0
Image_CMYK cmyk_src_renderintent.icc 1 1 0 0
Text_CMYK cmyk_src_renderintent.icc 2 1 0 0

Example: Object Dependent CM
 Destination Profile varies

Different destination profiles
specified for different objects

-sGraphicICCProle = yellow_output.icc
-sImageICCProle = magenta_output.icc
-sTextICCProle = cyan_output.icc

Example: Object Dependent CM
 Destination Intent varies

In this case, a special source
ICC profile for CMYK objects was
specified via the Ghostscript
command line.

Different rendering intents used for
graphics, images and text

-sGraphicICCProle = cmyk_des_renderintent.icc
-sImageICCProle = cmyk_des_renderintent.icc
-sTextICCProle = cmyk_des_renderintent.icc
-dImageIntent = 0
-dGraphicIntent = 1
-dTextIntent = 2

Proof and DeviceLink ICC Profile Usage

Two situations:

1) Can I print (or display) on device B what my output will look like if I were to
 print on device A?

 Use a proofing profile.

2) Can I map my output to a common standard space (e.g. Forgra39) and then
 perform a device link transform to my actual device values?

 Use a device-link profile.

Proof and DeviceLink ICC Profile Usage

Source
Colors

Source
ICC Profile

Proof
Profile

(inverse table)

Device
ICC Profile

Proof
Profile

(forward table)

CIELAB CIELAB

Proof
Device
Values Device

Values

Proof Profile Only Case:

Proof and DeviceLink ICC Profile Usage

Source
Colors

Source
ICC Profile

Device
ICC Profile

Device Link
ICC Profile

CIELAB
Device
Values

Device
Values

Device Link Profile Only Case:

Proof and DeviceLink ICC Profile Usage

Source
Colors

Source
ICC Profile

Proof
Profile

(inverse table)

Device
ICC Profile

Device Link
ICC Profile

Proof
Profile

(forward table)

CIELAB CIELAB

Proof
Device
Values

Device
Values

Device
Values

Both proofing and device-link profile.

New Case: DeviceLink ICC Profile Usage

Use Device Link Profile Directly to output: Specified with -sSourceObjectICC

Graphic_RGB linkRGBtoCMYK.icc 0 1 0

Note output can be DeviceN.

Source
Colors

Device Link
ICC Profile

Device
Values

Note that if –sDeviceLinkProfile is also used then you have:

Source
Colors

Device Link
ICC Profile1

Device
Values

Device Link
ICC Profile2

Bug Tracking

http://bugs.ghostscript.com/

No Significant CUPs device issues

Search in Bugzilla reveals mainly issues from recent new automated tests
using valgrind and fuzzing methods

PDF Output Rendering Intent

OutputIntents array (Optional; PDF 1.4) An array of output intent
dictionaries describing the color characteristics of output devices on which
the document might be rendered (see “Output Intents” on page 970).

GS now supports PDF Output Rendering Intent usage Passes all Ghent
tests and these are included in the testing suite.

PDF Output Rendering Intent

-dUsePDFX3Profile = #

Where # defines which output intent to use in the order that they
occur in the document. If no number specified, first one encountered is used.

If no profile is present in the intent dictionary, a warning is displayed and
the rendering intent is ignored.

If the output intent ICC profile does not match the process color model of the
output device, then the output intent ICC profile is used as a proofing profile.

Planar Separation Devices

Most devices make use of a memory device to buffer the rendered page.

Until recently, Ghostscript was primarily set up for use with chunky memory
with the largest chunky pixel being 64 bits.

This presented a limitation for Separation devices with a large number
of spot colors.

Spot 1 Spot 2 Spot 3 Spot 4

64 bit word with CMYK + 4 spots

Planar Separation Devices

One approach to solve this was to use a compressed color encoding scheme.

Since certain combinations are more likely to occur.

For example a pure 100% spot with no other colorants is going to be
common in label printing.

In the presence of transparency and shadings with multiple colorants this
approach begins to break down.

Solution is to go to a planar memory memory model.

Advantage for laser print applications.

Now fully implemented and regression tested with every commit.

Planar Separation Devices

Spot N

Spot 1

MuPDF

What is MuPDF?

• A core set of libraries
 + Entirely written in C
 + Very portable
 - We've done: Windows/Linux/MacOS/iOS/Android
 - Third parties: BB10/QNX/others

• Various example tools that use these libraries:
 + Simple viewers for Linux/Android/MacOS/iOS/Windows.
 + Command line tools for rendering PDF pages.
 + Command line tools for manipulating PDF files
 - page extraction
 - decompression
 - repair
 - resource extraction

• Licensing the same as Ghostscript. Dual AGPL/Proprietary licensed.
 Artifex owns the copyright.

Why MuPDF when we have Ghostscript?

For printing on large machines - use Ghostscript.

 * Postscript
 * PCL
 * Spot colors
 * Extreme level of color management control
 * Massive range of output devices

Why MuPDF when we have Ghostscript?

For screen use or embedded devices - use MuPDF.

 * Fast
 + PDF Parser in C, not Postscript.
 + AA Rendering designed in from the ground up.
 * Small
 + Much smaller ROM footprint.
 * Simple
 + No complex garbage collector to maintain
 + Small set of dependent libraries
 + Simpler to port
 * Interactive features
 + More suitable for building viewers
 + Searching
 + Zooming
 + Form filling
 + Transitions

Features of MuPDF

 "Complete" PDF support
 + Transparency
 + Patterns/Shadings
 + Fonts (all kinds)
 + Image formats
 + Decryption
 + Interaction (more later)

Features of MuPDF

 Not just "PDF" - Other formats too:
 + XPS
 + CBZ/JPEG/PNG
 + Extensible system

"Device" interface
 + Separates interpretation from rendering
 + Allows display lists
 - interpret page once, render many times at different zooms
 + Allows format conversions (more later)

Features of MuPDF

Clever memory management
 + Caching of objects (both raw and decoded)
 + Memory scavenging (throw objects away just in time)

Optional Multi-core/threading support
 + Not tied to any one threading implementation
 - All we need is locks
 + Interpretation happens on 1 thread
 + Rendering can happen on many.
 - Thumbnails rendered in the background.
 - Banded rendering of pages.
 - Resources decoded on one thread can be used by others.

Recent changes: Interactivity

Form filling
 + Javascript for validation
 - Not tied to any one javascript implementation
 - Thin veneer to Googles 'v8' engine supplied
 + Ability to save files back with data in them.

Google Cloud Print support added to Android app

Recent changes: Interactivity

Reflow View
 + Pages extracted to HTML (text and images).
 + Rudimentary layout detection (tables, indents, etc.)
 + Still a work in progress.

Digital Signatures
 + Verify signatures
 + Sign documents
 + Re-sign documents after form filling
 + Still a work in progress.

Future Work

Submission of filled in forms.
 + Several different ways of doing this.
 - Send the whole filled in file.
 - Extract data as XML and send that.

Improve page extraction for reflow.
 + Improve column detection
 + Reorder lines
 + Spot captions on images
 + Preserve "line art" areas of the page as images

Future Work

Output devices for format conversion.
 + PDF output (prototype code exists)
 + SVG output (prototype code exists)
 + Other possibilities include XPS or PCL.

More input devices
 + SVG seems most likely.

Color Management
 + Use LCMS to enable color management throughout.

Get Involved

If any of this sounds interesting, we'd love to hear from you.

Our development direction is driven by customers and users.

Contributions are always welcome. We have a bug bounty scheme.

Repository located at
 git://git.ghostscript.com/mupdf.git

MuPDF discussions on IRC freenode #ghostscript channel

Additional information at www.mupdf.com

Thank you for your attention!

michael.vrhel (at) artifex.com

