
Ghostscript and MuPDF Status

OpenPrinting summit August 2014

Michael Vrhel, Ph.D.

Artifex Software Inc.

San Rafael CA

Outline

Ghostscript overview

What is new…

Color Architecture Details

Threading and GS

MuPDF

The Basics

Ghostscript is a document conversion and rendering engine.

Written in C ANSI 1989 standard (ANS X3.159-1989)

Essential component of the Linux printing pipeline.

Dual AGPL/Proprietary licensed. Artifex owns the copyright.

Source and documentation available at www.ghostscript.com

http://www.ghostscript.com/

Graphical Overview

Ghostscript

Graphics Library

PDF 1.7 XPS
PostScript

Level 3
PCL5e/c with

GL/2 and RTL PCLXL

High level

Output drivers:

Pswrite PDFwrite

XPSwrite Custom

Printer drivers:

Inkjet

Laser

etc.

Raster output API:

TIFF

JPEG

CUPS

Devices

Understanding devices is a major key to understanding Ghostscript.

Devices can have high-level functionality. e.g. pdfwrite can handle text, images,

patterns, shading, fills, strokes and transparency directly.

Devices may be set up to handle only certain high-level operations.

Graphics library has “default” operations. e.g. text turns into bitmaps, images

decomposed into rectangles.

In embedded environments, calls into hardware can be made.

Raster devices require the graphics library to do all the rendering.

Relevant Changes to GS since last meeting….

The upcoming page can now be interpreted to a display list while the

current page display list is being rendered on multiple threads (9.10)

 -dBGPrint = true/false

It is now possible to monitor the content for the presence of color. If no color

is detected the buffers are converted to gray scale. This is primarily

aimed at workflows where saving ink (especially color inks) is required. (9.10)

 -dGrayDetection=true/false

Support added to build Ghostscript DLL for WinRT for x86, x64 and ARM

(Requires MS Visual Studio 2012 Pro). (9.10)

Relevant Changes to GS since last meeting….

The URW Postscript font set has been updated to the latest version, fixing

many compatibility problems with the Adobe fonts. (9.10)

Large transparency flattening cases now handled by using a display list for

the transparency enabling the use of small bands, reducing memory use. (9.14)

pdfwrite now uses the same color management engine as Ghostscript

rendering devices (by default LCMS2). (9.14)

A new device 'eps2write' has been added which allows for the creation of

EPS files using the ps2write device instead of the old (deprecated and removed)

pswrite device. (9.14)

Old epswrite device is now deprecated and will be removed in a future release.

Relevant Changes to GS since last meeting….

Ghostscript can now collect information for pages in temp files

(in Ghostscript's clist format), then render and output pages for the job in arbitrary

order, including normal, reverse, odd, even, or subset of the pages. (9.14)

--saved-page=___ option.

The Ghostscript device architecture has been extended so that, when rendering

bands into multiple threads, possible to perform post-processing in multiple threads,

such as downscale, post-render halftoning, or compression. (9.14)

The CUPS device now has improved support for PPD-less printing (9.14)

Upcoming: Full ICC color support in pdfwrite device. (9.15)

Ghostscript Color Flow

ICC Profile ICC Profile

Device

Colors

Device

Colors

Gray

RGB

CMYK

N-Channel

Named Color

Color

Management

Module (CMM)

Linked transform

from source to

device color

Ghostscript Color Architecture

• Easy to interface different CMM with Ghostscript.

• ALL color spaces defined in terms of ICC profiles.

• Linked transformations and internally generated profiles cached.

• Easily accessed manager for ICC profiles.

• Easy to specify default profiles for DeviceGray, DeviceRGB and DeviceCMYK.

• Devices communicate their ICC profiles and have their ICC profile set.

• Operates efficiently in a multithreaded environment.

• Handles named colors with ICC named color profile or proprietary format.

• ICC Color management of Device-N colors or customizable spot handling.

• Includes object type (e.g. image, graphic, text) and rendering intent into the

 computation of the linked transform. Maintained with transparency.

Ghostscript Color Architecture

• Ability to override document embedded ICC profiles with Ghostscript’s default

 ICC profiles.

• Easy to specify unique source ICC profiles to use with CMYK and RGB graphic,

 image and text objects.

• Easy to specify unique destination ICC profiles to use with graphic, image and

 text objects.

• Easy to specify different rendering intents (perceptual, colorimetric, saturation,

 absolute colorimetric) and black point comp. for graphic, image and text objects.

• Control to force gray source colors to black ink only for devices that support

 black ink (e.g. CMYK).

Ghostscript Color Architecture

• Make use of PDF output intent ICC profile.

• Use an NCLR ICC output profile when rendering to a separation device.

• Make use of device link ICC profiles for direct mapping of source colors to the

device color space.

• Ability to make use of device link ICC profiles for retargeting from SWOP/Fogra

 standard color space to a specific device color space.

gsicc_init_buffer

gsicc_get_link

gsicc_release_link

gsicc_set_icc_directory

gsicc_set_profile

gsicc_init_device_profile

gsicc_set_gscs_profile

gsicc_get_gscs_profile

gsicc_profile_new

gsicc_get_profile_handle_buffer

Each thread could

have access to a
common ICC cache

or create its own

Graphics

Library
&

Interpreter

CMM

gscms_error

gscms_create

gscms_destroy

gscms_get_profile_handle_mem

gscms_get_profile_handle_file

gscms_release_profile

gscms_get_link

gscms_get_link_proof_devlink

gscms_get_name2device_link

gscms_release_link

gscms_transform_color_buffer

gscms_transform_color

gscms_transform_named_color

gscms_get_numberclrtnames

gscms_get_clrtname

gscms_get_input_channel_count

gscms_get_output_channel_count

gscms_get_profile_data_space

gsicc_set_device_profile

gsicc_set_device_profile_intent

gx_default_get_profile

Device

User profile directory

gsicc_set_icc_directory

gsicc_set_profile

gsicc_init_device_profile

TextProfile.icc

Device Profiles For

Various Rendering

Cases and Object

Types GraphicsProfile.icc

ImageProfile.icc

ICC Manager

Link Cache

Named Color Profile

DeviceN Profiles []

DefaultGray Profile

DefaultRGB Profile

DefaultCMYK Profile

Profile Cache

SoftMask Profiles

Source Profiles

(override)

default_gray.icc

default_rgb.icc

default_cmyk.icc

iccprofiles

lab.icc

sRGB.icc

s-gray.icc

ps_gray.icc

ps_rgb.icc

ps_cmyk.icc

gray_to_k.icc

ProofProfile.icc

DevicLinkProfile.icc

Link Cache

Link entries are reference counted.

Link Cache

Hash Code Ref Count Link Structure

gsicc_get_link(* pis, *input_colorspace, *output_colorspace, *rendering_params,
memory, include_softproof)

GRAPHICS LIBRARY

Compute hash of
input CS, output CS,
rendering params

Search cache for
match. If found
return link. If not
request new link

Hash Code

Hash Code

Hash Code

Ref Count

Ref Count

Ref Count

Ref Count Hash Code Link Structure

Link Structure

Link Structure

Link Structure

Named Colors

A look-up-table.

There is an ICC

profile format for

named colors.

In many applications,

a custom format

is used.

For some companies

this is their value

added.

Required Optional

Device Value

Device Value

Device Value

Device Value CIELAB

CIELAB

CIELAB

CIELAB

Pantone Uncoated Yellow

Toyo Red

Pantone Coated Green

Toyo Coated Blue

int gscms_transform_named_color(gsicc_link_t *icclink,

 float tint_value,

 const char *ColorName,

 gx_color_value device_values[]);

Missing from ICC profile is ability to use

tint information. We provide opportunity

for CMM to use. If it cannot, then alternate

tint transform is used.

Conversion of PS and PDF Color Spaces

• Ghostscript creates ICC profiles from PDF and PS CIE colorspace definitions

 (e.g. CalRGB, CIEABC, CIEDEFG)

• To avoid repeated creations, these profiles are cached based upon a hash

 code that is related to the resource ID.

• Cache is designed such that MRU item is at the top of the list.

Device N color spaces (PDF and PS)

• For Device N output, very simple to provide capability for N-color ICC profile.

• Many desire to have CM with CMYK and to pass additional spot colors unmolested.

• For DeviceN input color, XPS requires ICC profile. PDF and PS use an

 alternate tint transform.

• Architecture provides capability to define N-color ICC profile for DeviceN

 input colors to replace the alternate tint transform if desired.

• Named color custom support is possible for DeviceN source colors. Example

 implementation is given in gs\toolbin\color\named_color folder

Current Color Command Line Interface

Source Default Profiles

-sDefaultGrayProfile = my_gray_profile.icc

-sDefaultRGBProfile = my_rgb_profile.icc

-sDefaultCMYKProfile = my_cmyk_profile.icc

-sDeviceNProfile = my_devicen.icc

-sNamedProfile = my_namedcolor_profile.icc

Device Profile

-sOutputICCProfile = my_device_profile.icc

ICC Search Directory

-sICCProfilesDir = c:/my_iccprofiles/

Other Settings

-sProofProfile = my_proof_profile.icc

-sDeviceLinkProfile = my_link_profile.icc

-dRenderIntent = intent (0, 1, 2, 3)

-dOverrideICC = true/false

-dDeviceGrayToK = true/false

-dUseFastColor = true/false

-dBlackPtComp = 0 / 1

-dKPreserve = 0 / 1 / 2

-dSimulateOverprint = true/false

-dUsePDFX3Profile = int

-sICCOutputColors = “Cyan, Magenta, Yellow, Black, Orange, Violet"

Current Color Command Line Interface

Object Dependent Color Management

Object Dependent Color Management

Source Profiles

Source object dependent control achieved through the command line

Specification:

-sSourceObjectICC = filename

Contents of this file define what source profiles and settings should be used

with what objects

Key Profile Intent BlackPtComp Override BlackPreserve

Graphic CMYK cmyk_src_graphic.icc 0 1 0 0

Image CMYK cmyk_src_image.icc 0 1 0 0

Text CMYK cmyk_src_text.icc 0 1 0 0

Graphic RGB rgb_source_graphic.icc 0 1 0

Image RGB rgb_source_image.icc 0 1 0

Text RGB rgb_source_text.icc 0 1 0

Object Dependent Color Management

Destination Profiles

Destination object dependent control achieved through the command line

-sTextICCProfile = my_device_text_profile.icc

-sGraphicICCProfile = my_device_graphic_profile.icc

-sImageICCProfile = my_device_image_profile.icc

-dTextIntent = intent (0, 1, 2, 3)

-dGraphicIntent = intent (0, 1, 2, 3)

-dImageIntent = intent (0, 1, 2, 3)

-sTextBlackPt = 0/1

-sGraphicBlackPt = 0/1

-sImageBlackPt = 0/1

-sTextKPreserve = 0/1/2

-sGraphicKPreserve = 0/1/2

-sImageKPreserve = 0/1/2

Example: Object Dependent CM

 Default Profiles

Source file includes RGB and CMYK

Images, graphics and text.

Example: Object Dependent CM

 Source Profiles Vary

In this case, different ICC profiles

were specified to be used with RGB

and CMYK graphic, image, and text

objects via the Ghostscript command line

with –sSourceObjectICC = filename.

Graphic_CMYK cmyk_src_cyan.icc 0 1 0 0

Image_CMYK cmyk_src_magenta.icc 0 1 0 0

Text_CMYK cmyk_src_yellow.icc 0 1 0 0

Graphic_RGB rgb_source_red.icc 0 1 0

Image_RGB rgb_source_green.icc 0 1 0

Text_RGB rgb_source_blue.icc 0 1 0

Example: Object Dependent CM

 Source CMYK rendering intent varies

In this case, a special source

ICC profile for CMYK objects was

specified via the Ghostscript

command line. The profile was designed to

give radically different results in different

rendering intents.

Different rendering intents used for CMYK

graphics, images and text

Graphic_CMYK cmyk_src_renderintent.icc 0 1 0 0

Image_CMYK cmyk_src_renderintent.icc 1 1 0 0

Text_CMYK cmyk_src_renderintent.icc 2 1 0 0

Example: Object Dependent CM

 Destination Profile varies

Different destination profiles

specified for different objects

-sGraphicICCProle = yellow_output.icc

-sImageICCProle = magenta_output.icc

-sTextICCProle = cyan_output.icc

Example: Object Dependent CM

 Destination Intent varies

In this case, a special source

ICC profile for CMYK objects was

specified via the Ghostscript

command line.

Different rendering intents used for

graphics, images and text

-sGraphicICCProle = cmyk_des_renderintent.icc

-sImageICCProle = cmyk_des_renderintent.icc

-sTextICCProle = cmyk_des_renderintent.icc

-dImageIntent = 0

-dGraphicIntent = 1

-dTextIntent = 2

Proof and DeviceLink ICC Profile Usage

Two situations:

1) Can I print (or display) on device B what my output will look like if I were to

 print on device A?

 Use a proofing profile.

2) Can I map my output to a common standard space (e.g. Forgra39) and then

 perform a device link transform to my actual device values?

 Use a device-link profile.

Proof and DeviceLink ICC Profile Usage

Source

Colors

Source

ICC Profile

Proof

Profile

(inverse table)

Device

ICC Profile

Proof

Profile

(forward table)

CIELAB CIELAB

Proof

Device

Values Device

Values

Proof Profile Only Case:

Proof and DeviceLink ICC Profile Usage

Source

Colors

Source

ICC Profile

Device

ICC Profile

Device Link

ICC Profile

CIELAB

Device

Values
Device

Values

Device Link Profile Only Case:

Proof and DeviceLink ICC Profile Usage

Source

Colors

Source

ICC Profile

Proof

Profile

(inverse table)

Device

ICC Profile

Device Link

ICC Profile

Proof

Profile

(forward table)

CIELAB CIELAB

Proof

Device

Values

Device

Values
Device

Values

Both proofing and device-link profile.

DeviceLink ICC Profile Usage

Use Device Link Profile Directly to output: Specified with -sSourceObjectICC

Graphic_RGB linkRGBtoCMYK.icc 0 1 0

Note output can be DeviceN.

Source

Colors

Device Link

ICC Profile

Device

Values

Note that if –sDeviceLinkProfile is also used then you have:

Source

Colors

Device Link

ICC Profile1

Device

Values

Device Link

ICC Profile2

Special Color Handling

The color transformation operations have a simple API.

A link (which transforms colors from one space to another)

has a structure called gscms_procs_t which contains three

functions.

void (*gscms_trans_color_proc_t) (gx_device*, gsicc_link_t*,

 void *inputcolor, void *outputcolor, int num_bytes);

void (*gscms_trans_buffer_proc_t) (gx_device*, gsicc_link_t*,

 gsicc_bufferdesc_t *input_buff_desc,

 gsicc_bufferdesc_t *output_buff_desc,

 void *inputbuffer, void *outputbuffer);

void (*gscms_link_free_proc_t) (gsicc_link_t *icclink);

Special Color Handling Continued

It is simple to replace these procedures with other ones to do special color

handling/customization with minimal code writing.

Ghostscript includes three examples:

gsicc_nocm.c

This contains code which uses 255-X style color management.

gsicc_monitorcm.c

This contains code to monitor the colors encountered during management.

Used to monitor for non-gray content.

gsicc_replacecm.c

This contains code to replace the incoming colors in some “special” way.

PDF Output Rendering Intent

OutputIntents array (Optional; PDF 1.4) An array of output intent

dictionaries describing the color characteristics of output devices on which

the document might be rendered (see “Output Intents” on page 970).

GS supports PDF Output Rendering Intent usage Passes all Ghent

tests and these are included in the testing suite.

PDF Output Rendering Intent

-dUsePDFX3Profile = #

Where # defines which output intent to use in the order that they

occur in the document. If no number specified, first one encountered is used.

If no profile is present in the intent dictionary, a warning is displayed and

the rendering intent is ignored.

If the output intent ICC profile does not match the process color model of the

output device, then the output intent ICC profile is used as a proofing profile.

Ghostscript’s Display List and Threads

On memory limited devices ghostscript will subdivide a job into bands

to reduce peak memory usage. This will occur for raster output devices.

Following our device-centric world, the display list is a high-level device.

output can be stored in memory or on disk.

Memory-based display list can be compressed if RAM resources become

critical. LRU cache is used with decompression to maximize performance.

Disk-based display list is optimized to prevent seeking during reading.

Encoded in the display list output are commands and the bands in which they

occur.

Each band can be rendered as a separate thread, providing significant

performance improvement for multi-core systems.

Display List Multithreaded Rendering

Display

List

GS and threads

Display list of page 25

being rendered into bands

by 4 threads. Note that

numbers bands need not

equal number of threads.

Thread 1

Thread 2

Thread 3

Thread 4

Page 26 being interpreted

and display list created

with another thread.

Thread 5

GS and threads

Post processing on rendered band buffer can be performed on thread used to

render the particular band. These methods are defined in the device.

gdevcmykog.c provides an example implementation.

Thread 1 Render to

Buffer

Halftone Object based

CM

Thread 2 Render to

Buffer

Halftone Object based

CM

Thread 3 Render to

Buffer

Halftone Object based

CM

Thread 4 Render to

Buffer

Halftone Object based

CM

Bug Tracking

http://bugs.ghostscript.com/

MuPDF

What is MuPDF?

• A core set of libraries

 + Entirely written in C

 + Very portable

 - We've done: Windows/Linux/MacOS/iOS/Android

 - Third parties: BB10/QNX/others

• Various example tools that use these libraries:

 + Simple viewers for Linux/Android/MacOS/iOS/Windows/WinRT.

 + Command line tools for rendering PDF pages.

 + Command line tools for manipulating PDF files

 - page extraction

 - decompression

 - repair

 - resource extraction

• Licensing the same as Ghostscript. Dual AGPL/Proprietary licensed.

 Artifex owns the copyright.

Why MuPDF when we have Ghostscript?

For printing on large machines - use Ghostscript.

 * Postscript

 * PCL

 * Spot colors

 * Extreme level of color management control

 * Massive range of output devices

Why MuPDF when we have Ghostscript?

For screen use or embedded devices - use MuPDF.

 * Fast

 + PDF Parser in C.

 + AA Rendering designed in from the ground up.

 * Small

 + Much smaller ROM footprint.

 * Simple

 + No complex garbage collector to maintain

 + Small set of dependent libraries

 + Simpler to port

 * Interactive features

 + More suitable for building viewers

 + Searching

 + Zooming

 + Form filling

 + Transitions

Features of MuPDF

 "Complete" PDF support

 + Transparency

 + Patterns/Shadings

 + Fonts (all kinds)

 + Image formats

 + Decryption

 + Interaction (more later)

Features of MuPDF

 Not just "PDF" - Other formats too:

 + XPS

 + CBZ/JPEG/PNG

 + Extensible system

"Device" interface

 + Separates interpretation from rendering

 + Allows display lists

 - interpret page once, render many times at different zooms

 + Allows format conversions (more later)

Features of MuPDF

Clever memory management

 + Caching of objects (both raw and decoded)

 + Memory scavenging (throw objects away just in time)

Optional Multi-core/threading support

 + Not tied to any one threading implementation

 - All we need is locks

 + Interpretation happens on 1 thread

 + Rendering can happen on many.

 - Thumbnails rendered in the background.

 - Banded rendering of pages.

 - Resources decoded on one thread can be used by others.

Recent changes: Interactivity

Form filling

 + Javascript for validation

 - Not tied to any one javascript implementation

 - Thin veneer to Googles 'v8' engine supplied

 - muJS is our own small javascript library

 + Ability to save files back with data in them.

Google Cloud Print support added to Android app

Recent changes: Interactivity

Reflow View

 + Pages extracted to HTML (text and images).

 + Rudimentary layout detection (tables, indents, etc.)

Digital Signatures

 + Verify signatures

 + Sign documents

 + Re-sign documents after form filling

Future Work

Submission of filled in forms.

 + Several different ways of doing this.

 - Send the whole filled in file.

 - Extract data as XML and send that.

Improve page extraction for reflow.

 + Improve column detection

 + Reorder lines

 + Spot captions on images

 + Preserve "line art" areas of the page as images

Future Work

Output devices for format conversion.

 + PDF output (prototype code exists)

 + SVG output (prototype code exists)

 + Other possibilities include XPS or PCL.

More input devices

 + SVG seems most likely.

Color Management

 + Plan to use LCMS to enable color management.

Get Involved

If any of this sounds interesting, we'd love to hear from you.

Our development direction is driven by customers and users.

Contributions are always welcome. We have a bug bounty scheme.

Repository located at

 git://git.ghostscript.com/mupdf.git

MuPDF discussions on IRC freenode #ghostscript channel

Additional information at www.mupdf.com

Thank you for your attention!

michael.vrhel (at) artifex.com

