
1

Subj: Pros and Cons of a separate jmJobStateTable1
From: Tom Hastings, Harry Lewis, and Ron Bergman2
Date: 5/14/973
File: sepstate.doc4

5
The biggest issue remaining in the Job Monitoring MIB is the duplication of information in the6
jmJobStateTable and the jmAttributeTable. Should we get rid of the duplication? And if so, do we7
delete the jmJobStateTable or the duplicated attributes in the jmAttributeTable? A second issue is8
whether the AssociatedValue object/attribute that provides a discriminant union of values based on the9
job's state should be kept in either table. This paper is intended to further the discussion about this topic.10

1. Summary of current overlap of jmJobStateTable and jmAttributeTable11

The overlap between the jmJobStateTable and jmAttributeTable in the current MIB specification is12
summarized by the following table:13

Table 114

jmJobStateTable object corresponding
jmAttributeTable attribute

Mand
atory?

static/dy
namic?

AssociatedVal
ue state

jmJobState jobState(3) yes dynamic -

jmJobStateKOctetsCompleted jobKOctetsCompleted(50) yes dynamic -

jmJobStateImpressionsCompleted impressionsCompleted(55) yes dynamic canceled

jmJobStateAssociatedValue jobStateAssociatedValue(4) yes dynamic -

jobStartedBeingHeldTimeSta
mp(73)

no dynamic held

numberOfInterveningJobs(9) yes dynamic pending

jobKOctetsRequested(48) yes static processing

impressionsRequested(54)
[currentCopy(??) proposed]

yes
yes

static
dynamic

printing
printing

deviceAlertCode(10) yes dynamic needsAttention

outputBinIndex(34) yes dynamic completed

15

The jmJobStateTable is indexed by jmJobSetIndex and jmJobIndex.16

The jmAttributeTable is indexed by jmJobSetIndex, jmJobIndex, jmAttributeTypeIndex, and17
jmAttributeInstanceIndex.18

2. Summary of the Issues19

The issues around the above objects/attributes are (in a logical order for consideration):20

ISSUE 68 - Delete the Job State Group/Table all together, since all objects are also duplicated as21
attributes in the jmAttributeTable?22

23

Sub-issues to Issue 68 are:24

2

ISSUE 68a: If we keep the jmJobStateTable, should we delete the attributes out of the25
jmAttributeTable that already appear as objects in the jmJobStateTable, namely jmJobState(3),26
jobKOctetsCompleted(50), and impressionsCompleted(55)?27

28

ISSUE 68b: If we keep the jmJobStateTable, should we move the mandatory associated attributes (1)29
out of the jmAttributeTable that the jmJobStateAssociatedValue object provides a convenient copy and30
(2) into the jmJobStateTable as objects? Then the jmAttributeTable would contain only conditionally31
mandatory attributes and the jmAttributeTable, itself, would change from Mandatory to Conditionally32
Mandatory.33

In other words, move numberOfInterveningJobs(9), jobKOctetsRequested(48),34
impressionsRequested(54), [or the proposed currentCopy(??)], deviceAlertCode(10), and35
outputBinIndex(34) into the jmJobStateTable as mandatory objects:36
jmJobStateNumberOfInterveningJobs, jmJobStateKOctetsRequested,37
jmJobStateImpressionsRequested [or proposed jmJobStateCurrentCopy],38
jmJobStateDeviceAlertCode, and jmJobStateOutputBinIndex. (Don't move the non-mandatory39
jobStartedBeingHeldTimeStamp(73)).40

41

ISSUE 69- Does order of assignment of JmAttributeTypeTC enums make any difference?42

Would it help if the mandatory attributes were first, so that Get Next would pick them up first when43
getting the next conceptual row? Does making the attribute table easier to navigate using Get Next help44
with the decision to Issue 68 and 68b?45

46

ISSUE 75 - Should the Attribute enum values be grouped so additions could be added in the appropriate47
section48

When producing the first Internet-Draft, I re-arranged the Attribute enums into logical groups, so that49
attributes would be easier to find. We now have 78 attributes, so logical grouping is becoming important50
to make the list more understandable. Several people had proposed adding attributes that were already51
present in the spec. Also Harry has expressed the concern that any re-assignment of at least OIDs, causes52
problems with tracking the drafts Finally, when the standard achieves proposed status, there will be53
additional registrations. It might be helpful if the enums could be assigned to the appropriate group,54
instead of only at the end.55

The current logical grouping are:56
Job State attributes 1057
Job Identification attributes 1958
Job Parameter attributes 759
Image Quality attributes (requested and used) 660
Job Progress attributes (requested and consumed) 761
Impression attributes (requested and consumed) 662
Page attributes (requested and consumed) 363
Sheet attributes (requested and consumed) 364
Resource attributes (requested and consumed) 765
Time attributes (set by server or device) 966

OK to assign Job State and Job Identification in steps of 30 and the rest in steps of 20?67

See also Issue 69. We could put the mandatory attributes first, and then group the rest as above.68

69

3

Issue 78 - Should the "multiplexor" (discriminant union?) jobStateAssociatedValue(4) attribute be70
removed from the Job Attribute Table and the equivalent jmJobStateAssociatedValue object be removed71
from the Job State table?72

The associated values are also available as attributes in the attribute table. The application has to either73
(1) request all 7 associated attributes or (2) first request the jobState(3) attribute and the request the 174
pertinent attribute. Since all 7 will easily fit in a PDU (minimum of 500 octets or so on all systems) and75
each request takes about 20 octets, so you can get about 20 (5*4) attributes into a single PDU.76

77

Issue 79 - Should the 'printing' state be combined into the 'processing' state?78

Many printers don't distinguish between 'processing' and 'printing', especially desktop printers. For79
those that do, having a state change that really reflects progress, such as the transition from processing to80
printing, is better handled as a job state reason, not as a fundamental state change. Finally, since this81
MIB is intended for non-printing services in the future, such as fax out, CD-ROM writing, fax-in,82
scanning, etc., it would help if one of the states wasn't 'printing'. Even IPP, only has the state of83
'processing', with a job-state-reason of 'job-printing' for those implementations that make the distinction84
and want to go to the trouble of indicating the difference. IPP even indicates that "most implementations85
won't bother with this nuance".86

87

ISSUE 68c: If we keep the jmJobStateAssociatedValue object, we could just change the attributes listed88
in ISSUE 68b from mandatory to optional and keep them only in the jmAttributeTable. The89
jmJobStateAssociatedValue object would remain in the jmJobStateTable to provide access to these90
attributes mandatorally.91

92
Issue 76 - So should jobName, jobOwner, and one of deviceNameRequested or queueNameRequested93
be made Mandatory?94
When we moved attributes from the job table to the attributes table (Issue 54 and 56), we didn't make any95
of them mandatory for an agent to implement. Should any of them be made Mandatory?96

The old job table had the following (mandatory) objects in it:97
jmJobName98
jmJobIdName99
jmJobIdNumber100
jmJobServiceType101
jmJobOwner102
jmJobDeviceNameOrQueueRequested103
jmJobCurrentState104
jmJobStateReasons105

106
1. jmJobIdName and jmJobIdNumber have been replaced by jmJobSubmissionIDIndex which is107

Mandatory.108
2. jmJobServiceType need not be Mandatory.109
3. Also jmJobDeviceNameOrQueueRequested has been made into two separate attributes:110

deviceNameRequested and queueNameRequested, so we'd have to make either one of them111
mandatory.112

4. jmJobCurrentState is now jobState and is Mandatory113
5. jmJobStateReasons became four attributes: jobStateReasons1, jobStateReasons2,114

jobStateReasons3, and jobStateReasons4. None of them need to be Mandatory.115
116

4

So should jobName, jobOwner, and one of deviceNameRequested or queueNameRequested be made117
Mandatory?118

119
ISSUE 76a - If yes, then should they be put into the jmJobStateTable, instead of the jmAttribute table, if120
Issue 68b concluded that the jmAttributeTable should have no mandatory attributes.121
ISSUE 70 - Add some simple general device alert TC, instead of using the Printer MIB Alert Codes.122

The PrtAlertCodeTC generic values are not much good to an end user without knowing which subunit.123
For example, SubUnitEmpty isn't very informative by itself. If an implementation also has the Printer124
MIB, then a lot more information is available, so a copy of the Printer Alert isn't very useful. If the125
implementation doesn't have the Printer MIB, then the Printer Alert codes aren't informative enough.126

Even worse, the deviceAlertCode(10) is Mandatory, which can't be implemented, if there isn't a Printer127
MIB also implemented.128

129

Issue 73 - Is there a problem with outputBinIndex being made mandatory?130

If outputBinIndex is made mandatory, but an implementation doesn't have the Printer MIB, the agent has131
to put 0 as the value. Should we add one more attribute: outputBinNumber, which is just a number, not132
an index into the Printer MIB? If we do, which should be mandatory? Just one more reason to get rid of133
the jmJobStateTable, which is forcing us to pick a particular outputBin implementation and make it134
mandatory. If we got rid of the jmJobStateTable, we could forget about making any of the 3135
outputBinName, outputBinNumber, or outputBinIndex attribute mandatory.136

Closed: Don't add outputBinNumber. Just add other(-1), unknown(-2), and multi(-3) values and keep137
outputBinIndex as mandatory. This does also means that jmAttributeValueAsInteger needs a lower138
bound of -3, not -2.139

140

ISSUE 87 - When shall an agent make the mandatory attributes appear in the jmAttributeTable?141

Shall an agent materialize all mandatory attributes when the job is submitted, so that a requester can142
access them all with multiple explicit Gets in a single PDU, without fear of a missing object aborting the143
PDU? If the mandatory attributes are represented as objects in the jmJobStateTable, then it is clear from144
SNMP rules that the agent shall materialize at least an empty value for each mandatory object (attribute).145

146

ISSUE 83 - Can some attributes be deleted before the jmGeneralAttributePersistence expires?147

Harry Lewis' 5/2 e-mail suggested that some of the attributes, such as "numberOfInterveningJobs(9)"148
don't even need to persist the shorter time specified by jmGeneralAttributePersistence.149

However, if we move the mandatory attributes to the jmJobStateTable and make them objects, then they150
shall persist for the longer persistence specified by jmGeneralJobPersistence.151

152

See the rest of the issues list for the issues that do not relate to the overlap objects/attributes between the153
jmJobStateTable and the jmAttributeTable.154

3. Accessing the jmJobStateTable and the jmAttributeTable155

In order to understand the pros and cons, it seems necessary to understand how an application would use156
Get and Get Next to get information from these two tables. We need to consider the three basic types of157
applications: (1) a job monitoring application that is monitoring a particular job, (2) a job monitoring158
application that is monitoring all jobs on a device or server, and (3) a job accounting or utilization159

5

program. The first two kinds of applications are interested in active jobs and the third is interested in160
inactive jobs (canceled, or completed).161

3.1 OID assignments to the objects162

In order to construct complete examples, it is helpful to use the actual OIDs that will be assigned to the163
objects and attributes in the MIB:164

165
> jobmonMIB166
> jobmonMIB.1 jobmonMIBObjects167
> jobmonMIB.1.1 jmGeneral168
 jobmonMIB.1.1.1 jmGeneralTable169
 jobmonMIB.1.1.1.1 jmGeneralEntry170
 jobmonMIB.1.1.1.1.1 jmGeneralNumberOfActiveJobs171
 jobmonMIB.1.1.1.1.2 jmGeneralOldestActiveJobIndex172
 jobmonMIB.1.1.1.1.3 jmGeneralNewestActiveJobIndex173
 jobmonMIB.1.1.1.1.4 jmGeneralJobPersistence174
 jobmonMIB.1.1.1.1.5 jmGeneralAttributePersistence175
 jobmonMIB.1.1.1.1.6 jmGeneralJobSetName176

177
> jobmonMIB.1.2 jmJobID178
 jobmonMIB.1.1.1 jmJobIDTable179
 jobmonMIB.1.1.1.1 jmJobIDEntry180
 jobmonMIB.1.1.1.1.1 jmJobSubmissionIDIndex181
 jobmonMIB.1.1.1.1.2 jmJobSetIndex182
 jobmonMIB.1.1.1.1.3 jmJobIndex183

184
> jobmonMIB.1.3 jmJobStateG185
 jobmonMIB.1.1.1 jmJobStateTable186
 jobmonMIB.1.1.1.1 jmJobStateEntry187
 jobmonMIB.1.1.1.1.1 jmJobState188
 jobmonMIB.1.1.1.1.2 jmJobStateKOctetsCompleted189
 jobmonMIB.1.1.1.1.3 jmJobStateImpressionsCompleted190
 jobmonMIB.1.1.1.1.4 jmJobStateAssociatedValue191

192
> jobmonMIB.1.4 jmAttribute193
 jobmonMIB.1.1.1 jmAttributeTable194
 jobmonMIB.1.1.1.1 jmAttributeEntry195
 jobmonMIB.1.1.1.1.1 jmAttributeTypeIndex196
 jobmonMIB.1.1.1.1.2 jmAttributeInstanceIndex197
 jobmonMIB.1.1.1.1.3 jmAttributeValueAsInteger198
 jobmonMIB.1.1.1.1.4 jmAttributeValueAsOctets199

200
> jobmonMIB.2 jobmonMIBConformance201
 jobmonMIB.2.1 jobmonMIBCompliance202
 jobmonMIB.2.2 jmMIBGroups203
 jobmonMIB.2.2.1 jmGeneralGroup204
 jobmonMIB.2.2.2 jmJobIDGroup205
 jobmonMIB.2.2.3 jmJobStateGroup206
 jobmonMIB.2.2.4 jmAttributeGroup207

208

3.2 Tables and the Get operation209

Recall that the OIDs for table entries consist of the OID for the entry (column) in the table, followed by210
the index(es) to that entry. To get the job state object in the jmJobStateTable for the job with a211
jmJobIndex of 1000 in job set 1, the requester must pass the following OID as a Get input parameter:212

6

jmJobState.1.1000, i.e., jobmonMIB.1.1.1.1.1.1.1000.213

To get the corresponding from the jmAttributeTable, which is the jobState(3) attribute, the requester214
must pass the following OID as a Get input parameter:215

jmAttributeValueAsInteger.1.1000.3.1, i.e., jobmonMIB.1.1.1.1.2.1.1000.3.1.216

Thus an application can always get the corresponding attribute from the jmAttributeTable with an OID217
that is only two octets longer than is required on a Get for the corresponding object jmJobStateTable.218

An application can get multiple objects from the jmJobStateTable and can get multiple attributes from219
the jmAttributeTable by supplying multiple Get operations in a single PDU.220

If there is no such object, the Get operation returns an error (and does not perform any further Get221
operations in the submitted PDU, correct?)222

3.3 Tables and the GetNext operation223

The SNMP GetNext operation returns the value of the object specified by the next lexically higher OID224
from the one supplied as an input parameter. GetNext also returns that next lexically higher OID itself, so225
that the application can pass it back as an input parameter to a subsequent GetNext in order to get the next226
object. If there are no lexically higher objects, GetNext returns an error.227

The OID input parameter does not need to be "fully specified". Trailing OID arcs can be omitted and they228
shall behave as if the requester supplied 0 for those arcs.229

For a single index table, Get Next can be used to get the "next conceptual row" in the table. GetNext must230
be used when the agent scatters rows in a table, i.e., the table is a "sparse" table. MIB specifications can231
specify that tables shall not be sparse. The jmJobStateTable is specified such that agents shall enter232
conceptual rows such that jmJobIndex is monatonically increasing, until wrap occurs. However, because233
jobs may be canceled, a canceled job may be removed from the middle of the table (after persisting for the234
jmGeneralJobPersistence time), thereby making the jmJobStateTable have an empty row, i.e., be a235
"little bit sparse". Also a system that processes jobs out of order may result in some empty rows in236
between rows that are awaiting the jmGeneralJobPersistence time to expire.237

An application can get the state of the next job after job 1000 in the jmJobStateTable by passing in the238
(same) OID:239

jmJobState.1.1000, i.e., jobmonMIB.1.1.1.1.1.1.1000240

If job 1001 had been canceled, say, and the agent removed it subsequently, the agent might return the241
state of job 1002 and the OID:242

jmJobState.1.1002, i.e., jobmonMIB.1.1.1.1.1.1.1002243

The application could copy the returned OID to the input parameter of a subsequent GetNext and the get244
the state of the next job after 1002, and so forth.245

If the application wanted to get more than just one object in the next conceptual row, the application could246
supply several GetNext operations in the same PDU. So to get the jmJobState,247
jmJobStateKOctetsCompleted, jmJobStateImpressionsCompleted, and jmJobStateAssociatedValue248
objects from the jmJobStateTable for the next job after 1002, the application could pass in the following249
four OIDs in four Get Next operations in the same PDU:250

jmJobState.1.1002, i.e., jobmonMIB.1.1.1.1.1.1.1002251
jmJobStateKOctetsCompleted.1.1002, i.e., jobmonMIB.1.1.1.1.2.1.1002252
jmJobStateImpressionsCompleted.1.1002, i.e., jobmonMIB.1.1.1.1.3.1.1002253
jmJobStateAssociatedValue.1.1002, i.e., jobmonMIB.1.1.1.1.4.1.1002254

The agent shall return the next OID in each GetNextResponse for each of these inputs, which would be255
the corresponding column in the next row, say, job 1003:256

7

jmJobState.1.1003, i.e., jobmonMIB.1.1.1.1.1.1.1003257
jmJobStateKOctetsCompleted.1.1003, i.e., jobmonMIB.1.1.1.1.2.1.1003258
jmJobStateImpressionsCompleted.1.1003, i.e., jobmonMIB.1.1.1.1.3.1.1003259
jmJobStateAssociatedValue.1.1003, i.e., jobmonMIB.1.1.1.1.4.1.1003260

NOTE - An application could not perform the above by using a individual repeated GetNext operation261
copying each result to the single input parameter, because GetNext increments the least significant part of262
the OID first. Thus, each individual GetNext would get the same column in the next row, not step across263
the columns in the same row.264

In order to perform the equivalent of the above example in the jmAttributeTable, i.e., get the265
jobState(3), jobKOctetsCompleted(50), impressionsCompleted(55), and the266
jobStateAssociatedValue(4) attributes in the jmAttributeTable for the next job after job with267
jmJobIndex 1002, the application must first determine the next valid jmJobIndex, which cannot be done268
by simply passing in the following OID in GetNext operation:269

jmAttributeValueAsInteger.1.1002.3.1, i.e., jobmonMIB.1.1.1.1.2.1.1002.3.1270

because the next lexically higher OID might be:271

jmAttributeValueAsInteger.1.1002.9.1, i.e., jobmonMIB.1.1.1.1.2.1.1002.9.1272

which is the numberOfInterveningJobs(9) attribute.273

Instead, the application must determine what the next jmJobIndex value either by doing a GetNext on the274
jmJobStateTable or by passing in the "incremented" partial OID that the application has incremented275
"by hand" and shortened by removing the trailing OID arcs after the jmJobIndex arc:276

jmAttributeValueAsInteger.1.1003, i.e., jobmonMIB.1.1.1.1.2.1.1003277

which will return the first attribute in the next job. The jmJobIndex arc the comes back in that278
GetNextResponse is the next jmJobIndex in the jmJobAttributeTable.279

3.4 Monitoring a single specific job280

When a user submits a job, the client could fire up a monitoring application that monitors the job just281
submitted. The monitoring application needs to determine the job's jmJobIndex by one of several282
methods, depending on the implementation and the configuration:283

(1) is told the jmJobIndex of the job to be monitored because the server returned the job-identifier which284
the application knows the map to jmJobIndex value,285

(2) can determine the jmJobIndex by doing a Get supplying the OID for the jmJobSubmissionIDIndex286
to the jmJobIDTable as follows. Suppose that the job submission id generated by the client is:287
"12345678nnnnnnnnnn"288

 jmJobIndex.1."12345678nnnnnnnnnn", i.e., jobmonMIB.1.1.1.1.3.1."12345678nnnnnnnnnn"289

 which returns the jmJobIndex for the job, or290

(3) can scan the jmAttributeTable looking for attributes that match, such as jobOwner(15),291
jobName(13), etc., though such a scan requires two probes: first to find the next jmJobIndex either292
from the jmAttributeTable or more straightforwardly from the jmJobStateTable.293

Give the jmJobIndex for the single job being monitored, the application can use direct Get operations to294
get any objects from the jmJobStateTable or attributes from the jmAttributeTable as shown above.295

3.5 Monitoring all active jobs on a server or device296

An operator might run an application that monitors all active jobs on a server or device. Such an297
application polls at some frequent enough interval to show changes, but not too frequently to bog down298

8

the network or server/device. An end-user might fire up an application to monitor all jobs on a server or299
printer, especially when searching for a "least busy printer". Here the time to find the jobs and get their300
attributes needs to be relatively short, or the user will not want to fire up such an application.301

With either scenario, the application has to determine the oldest active job with a Get specifying the302
jmJobSet=1, and it may as well get the number of active jobs and the newest active job index in the same303
PDU:304
 jmGeneralNumberOfActiveJobs.1, i.e., jobmonMIB.1.1.1.1.1.1305
 jmGeneralOldestActiveJobIndex.1, i.e., jobmonMIB.1.1.1.1.2.1306
 jmGeneralNewestActiveJobIndex.1, i.e., jobmonMIB.1.1.1.1.3.1307
If the value of jmGeneralOldestActiveJobIndex is 0, there are no active jobs and the application updates308
the display to show no jobs. Say the value of jmGeneralOldestActiveJobIndex is 2000.309

Then the application requests, say, the four (column) objects in the jmJobStateTable with four Gets in a310
single PDU as shown above for job 1000. Then the application submits four GetNext operations in the311
same PDU for each of the four objects in the jmJobStateTable as described above for job 1002.312

Finally, if there are some additional attributes that the application wishes to get, such as313
jobStateReasons1(5) and jobName(13), the application submits several Gets in a single PDU of the form:314

jmAttributeValueAsInteger.1.2000.5.1, i.e., jobmonMIB.1.1.1.1.2.1.2000.5.1315
jmAttributeValueAsOctets.1.2000.13.1, i.e., jobmonMIB.1.1.1.1.2.1.2000.13.1316

3.6 Accounting/Utilization application gathering data on317
completed/canceled jobs318

The accounting or utilization application remembers the lowest jmJobIndex from last time. The319
application can either get all jmJobStateTable objects and all jmAttributeTable attributes, or may get320
only certain selected attributes.321

To get all attributes, that application starts with the lowest jmJobIndex that it had on the previous poll322
cycle and supplies a number of GetNext operations in a single PDU.323

To get only selected attributes the application must first determine the next jmJobIndex by using GetNext324
on the jmJobStateTable. The application may as well get the other objects from the jmJobState with a325
bunch of GetNext operations in the same PDU. If the job is active, that data is probably thrown away, and326
the application steps on to the next job. If the job is inactive (canceled or completed), then the application327
would specify multiple Get operations in a single PDU, one for each attribute that it wished.328

4. Conclusions329

The jmJobStateTable is very useful because its lowest order index is jmJobIndex, so that any number of330
selected objects can be obtained with multiple GetNext operations in a single PDU for the next job,331
skipping over jobs that have been removed from the table. A subsequent PDU can contain multiple Get332
operations for any attributes desired using the returned jmJobIndex value.333

If the mandatory attributes are all put into the jmJobStateTable as objects, and not in the334
jmAttributeTable as attributes, it is clear by SNMP rules that all of the mandatory objects shall be335
instantiated at the same time when the new job row is put into the jmJobStateTable. Also the persistence336
time is clearly separated by which table the information is contained.337

The jmAttributeTable only contains conditionally mandatory attributes, no mandatory attributes, so that338
the jmAttributeTable itself can be conditionally mandatory, thereby allowing a very small339
implementation to only implement the jmJobStateTable and not the jmAttributeTable.340

