
INTERNET-DRAFT Randy Turner
Expires: September 1998 Sharp Labs of America

 Internet Printing Protocol over TCP/IP

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as ''work in progress''

To learn the current status of any Internet-Draft, please check the
``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
ftp.isi.edu (US West Coast).

1 Abstract

The Internet Printing Protocol (IPP) is fundamentally defined by the IPP
Model & Semantics/1.0 Document [1]. The IPP model was designed to be
transport-independent. There currently exists a document that describes
using Hypertext Transfer Protocol (HTTP) 1.1 as a transport layer for
IPP [IPPPROT]. Because the IPP model document is not transport-specific,
it was envisioned that possibly multiple transport specifications would
be authored for IPP. This document specifies such an alternate transport
for IPP messages, and attempts to clarify the transport-independence
implied by the IPP model and semantics document.

2 Overview

This document describes a new transport mapping for the IPP protocol.
The existing set of documents describing IPP define a model and abstract
protocol for printing, and an explicit encoding and transport over HTTP
1.1. This document is a transport document that explicit defines how the
existing IPP encoding is transported directly over TCP.

This document makes explicit references to both the IPP model document
[IPPMOD] and the existing IPP Protocol/Encoding document [IPPPROT]. This
proposal implies no semantic changes to the IPP model document. Further,
it reuses the encoding specified in [IPPPROT] in its entirety. Only the
mechanism for transporting the existing encoding is modified by this
proposal.

3 IPP over TCP/IP – Rationale Statement

There is a perceived notion that the current IPP-over-HTTP specification
imposes a "heavyweight" requirement on low-cost, embedded devices, in
terms of resources and implementation effort. Initial implementations of
IPP-over-HTTP will be targeted towards server-based systems, with local
storage capacity for spooling and other job management features. The use

of HTTP as a transport will allow quick deployment of internet
capability for printing through standard HTTP server extension
mechanisms (CGI, NSAPI, ISAPI, Java servlets, etc.). Because the core
IPP protocol model contains no HTTP-specific requirements or semantics,
this document suggests an alternate transport for the IPP abstract
protocol utilizing simpler transport semantics, as well as providing
slight changes to IPP client/server interaction. The changes are minor
and allow tighter integration of client and printer for notifications
and status information.

The following diagram shows one IPP topology for which the proposed
TCP/IP transport would be utilized

IPP/HTTP clients IPP Server IPP Printers

 --------- |------------------|
 | C1 | HTTP | + | TCP |------|
 | |=============| + |=========| P1 |
 --------- | H + | |------|
 | + T |
 --------- | T + |
 | C2 | HTTP | + C | TCP |------|
 | |=============| T + |=========| P2 |
 --------- | + P | |------|
 | P + |
 --------- | + | TCP |------|
 | C3 | HTTP | + |=========| P3 |
 | |=============| + | |------|
 --------- |------------------|

 Figure 1

Existing IPP/1.0-over-HTTP clients would submit jobs to IPP servers. The
servers would relay the IPP requests to physical printers using the
proposed TCP/IP transport. The transport gateway is just that, a
transport gateway, not an application-level gateway. Therefore, there
would be no loss in application information from client to eventual
physical printer.

Of course, this use of the proposed simple transport is but one possible
topology. The diagram above could be changed so that both IPP servers
and IPP clients BOTH connect to IPP physical printers, if both servers
and clients wish to take advantage of the features of the proposed
transport. Also, scenarios wherein multiple levels of servers
communicating with servers which eventually communicate with a physical
printer could be supported as well.

IPP security is also addressed by this memo, and a simpler mechanism for
support of in-band security negotiation is included in the proposed
transport.

4 IPP Protocol Processing

This draft proposes a model for IPP protocol operation that follows
other application protocols that support multiple transports, including
SNMP Version 3 [RFC2273]. The operation model described herein specifies
two independently operating "layers": The IPP processing layer and one
or more transport layers.

The IPP processing layer is the core protocol engine that understands
the semantics of protocol operations, such as requests and responses.
The core IPP protocol engine operates independently of transport. The
independence is achieved through adherence to specific interfaces. The
next section describes the abstract interface(s) employed to achieve the
multiple-transport model. The discussion of abstract transport
interfaces and subsequent status codes is merely to emphasize and
clarify how a particular IPP implementation might be architected to
support multiple transports. It also illustrates how IPP "transport-
gateways" can be constructed. The inclusion of this abstract model does
not imply that a particular implementation of this protocol mapping
SHOULD or MUST be constructed using these abstract semantics.

4.1 IPP Transport Interface

The following abstract interface is used by an IPP processing engine to
transmit a PDU, across a particular transport, to another IPP protocol
processing engine. The model and format is taken from [RFC2273] as an
example abstract interface, with similar features:

pduHandle = sendPdu(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- destination network address
 IN messageProcessingModel -- IPP Version Number
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN pduVersion -- Encoding model used
 IN PDU -- IPP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
)

Where,

"transportDomain" is the particular transport over which the IPP PDU is
being delivered.

"transportAddress" is the particular address within the transportDomain
that should receive the PDU.

"messageProcessingModel" is the particular IPP version number for which
the processing and semantics of the PDU are to be applied. Since the IPP
core processing engine and the transport layer may be independently
implemented, there might be version conflicts wherein a particular
transport layer cannot support a particular version of the IPP model.

"securityModel" is the particular security mechanism being employed for
protecting the PDU.

"securityLevel" is the particular level or degree of security within the
"securityModel" used to convey this PDU.

"securityName" is a particular end-user identifier (if known) that
should be used during the generation of authentication information for a
particular security mechanism.

"pduVersion" is the particular encoding rules used to encode the PDU.
This parameter is passed to the transport layer because the particular

transport layer might not be able to reliable encapsulate certain
encodings and guarantee their delivery.

"sendPduHandle" is an opaque "transaction-id" generated by the specific
transport layer for this PDU.

The core IPP processing engine would formulate IPP messages via some
encoding, and then subsequently pass these encoded PDUs to the
appropriate transport layer identified by transportDomain and endpoint
identified by transportAddress. In actual client implementations, these
two parameters would be derived from the "scheme" and "host" parts of a
URI.

 pduLength = receivePdu(-- process Response PDU
 IN transportDomain
 IN transportAddress
 IN messageProcessingModel -- IPP version number
 IN securityModel -- Security Model in use
 IN securityLevel -- Level of security
 IN securityName -- on behalf of this principal
 IN pduVersion -- encoding method used
 IN PDU -- IPP Protocol Data Unit
 IN sendPduHandle -- handle from sendPDU
)

Where,

"pduLength" is the length, in octets, of the received PDU. If the

"transportDomain" is the particular transport over which the IPP PDU is
received.

"transportAddress" is the particular address within the transportDomain
that originated the received PDU.

"messageProcessingModel" is the particular IPP version number for which
the processing and semantics of the PDU are to be applied.

"securityModel" is the particular security mechanism being employed for
protecting the received PDU.

"securityLevel" is the particular level or degree of security within the
"securityModel" used to convey this PDU.

"securityName" is a particular end-user identifier (if known) that was
translated from the particular security mechanism.

"pduVersion" is the particular encoding rules used to encode the
received PDU.

"sendPduHandle" is an opaque "transaction-id" generated by the
originator of this PDU.

This proposal specifies the use of the encoding as specified in [IPP-
PROT]. One particular use of this transport specification would be to
implement a gateway function as illustrated in Figure 1.

In the ideal gateway scenario, a core IPP processing engine would simply
relay requests from one transport (HTTP) to another transport (TCP/IP),
only varying the transportDomain and transportAddress parameters as
necessary.

The primary motivation by creating these abstract interfaces is to allow
maximum reuse of transport, encoding logic, and core protocol
processing. Using this gateway scenario, no loss of IPP semantic
information is incurred from end-user to IPP printer endpoint. In
theory, it might even be possible to construct gateways using this model
that are immune to differing IPP version numbers from client endpoint to
printer endpoint. This is because in this example, no modification of
the IPP PDU itself is performed when relaying from transport to
transport. This assumption would of course have to undergo validation.

4.2 Transport-specific Header

This proposal allows some transport-specific capabilities not explicitly
allowed (or guaranteed) by [IPPPROT]. This transport specification
utilizes a IPP-specific transport header that is required to support
mandatory features discussed in [IPPMOD]. This transport header can also
provide capabilities not explicitly provided by [IPPMOD].

The transport header includes four fields, A pduLength field and a
pduStatus field. The pduLength field denotes the length, in octets, of
the PDU. The pduStatus field indicates the status of the particular PDU
being processed. A list of possible status codes is discussed in section
5 of this proposal. The header itself is composed of ASCII text with the
syntax described by the following ABNF:

Xpt-Header = pduStatus SEP pduLength SEP pdu

pduStatus = 1*DIGIT

pduLength = 1*DIGIT

pdu = OCTET-STRING

SEP = 0x13x10

OCTET-STRING = *BYTE

BYTE = 0x00..0x255

This specification also requires registration of a new URI scheme,
"IPP", that designates a particular default port number for connecting
to IPP services using the transport specified by this document. Note
that the registration only specifies a default port number. Appendix A
of this document is the complete text of the URL registration. The
proposed URL syntax includes a field for specifying some other TCP port
number other than the default.

5. Transport Layer Status Codes

The following transport-specific error codes are grouped into three
different categories of severity: Normal, Error, and Warning. These
status codes would be associated with the abstract transport interface
previously described.

Normal

SUCCESS - transport layer request completed successfully

Errors

ERR-PROTOCOL - malformed transport layer packet was received
ERR-TIMEOUT - timeout waiting for response
ERR-DISCON - session abnormally disconnected
ERR-BADVER - IPP version not supported
ERR-BADPDU - IPP protocol encoding not supported
ERR-WOULDBLOCK - Initiating this operation would cause an indefinite
blocking state to occur.
ERR-INTERNAL - An internal transport error occurred.

Warnings

WARN-MORE-DATA - More data is available from the transport layer for
this particular request. This is an indication that more than one
individual transport layer packet was necessary to contain a particular
IPP message.

6. Security Considerations

The proposed transport specifies the use of one or more of the following
Simple Authentication and Security Layer (SASL) [RFC2222] profiles:

- STARTTLS [STARTTLS]
- ANONYMOUS [RFC2245]
- CRAM-MD5 [RFC2195]

SASL allows the publication of only one URI for service discovery
mechanisms (directory services, DHCP, etc). The existing IPP-over-HTTP
specification requires the use of different URI publications for secure
and non-secure IPP services. SASL negotiation is performed "in-band",
over a single connection, thereby eliminating the need for different
URIs for different security mechanisms. Of the three profiles specified
above, all but the STARTTLS profile is available for referencing as an
RFC. Given that this memo (IPP over TCP/IP) is dated March 1998, the
draft that describes the STARTTLS profile is scheduled for last call at
the beginning of April 1998. Anticipated RFC status for this draft falls
within a reasonable time period for inclusion in this proposal.

This document suggests the use of both ANONYMOUS and CRAM-MD5 as
MANDATORY security mechanisms. Both of these mechanisms only provide
authentication, not privacy. If privacy is required, then, like the IPP
model document specifies, TLS should be negotiated using the STARTTLS
SASL profile.

The ANONYMOUS mechanism allows similar access semantics as "anonymous
FTP", using just a simple clear text id string such as an email address
or other simple ASCII string.

CRAM-MD5 is a very simple mechanism for authentication using information
that is not passed as clear text. CRAM-MD5 like other MD5-based
authentication schemes, requires the knowledge of a shared secret
between client and printer. Shared secrets do not need to be kept for
all possible end-users. Rather, administrators may want to provide
secret keys that map to either small groups, or departmental access
keys. However, the use of aggregated keys does allow a greater
possibility for keys to be revealed to non-authorized parties. On the

other hand, this type of security may be acceptable for certain
environments that do not want open access to services(ANONYMOUS), but do
not want to deal with TLS-based security. [RFC2104] contains a detailed
description of the keyed-MD5 method employed by CRAM-MD5, as well as
example code that implements the algorithm.

6. References

[IPPMOD] DeBry R., Hastings T., Herriot R., Isaacson S., Powell P.,
"Internet Printing Protocol/1.0: Model and Semantics", Internet-Draft
draft-ietf-ipp-model-09, January 1998

[IPPPROT] Herriot R., Butler S., Moore P., Turner R., "Internet Printing
Protocol/1.0: Protocol Specification", Internet-Draft draft-ietf-ipp-
protocol-05, January 1998

[RFC1759] Smith R., Wright F., Hastings T., Zilles S., Gyllenskog J.,
"Printer MIB", RFC 1759, March 1995

[RFC2273] Levi D., Meyer P., Stewart B., "SNMPv3 Applications", RFC
2273, January 1998

[RFC2068] Fielding R., Gettys J., Mogul J., Frystyk H., Berners-Lee T.,
"Hypertext Transfer Protocol – HTTP/1.1", RFC 2068, January 1997

[RFC2119] Bradner S., "Keywords for Use in RFCs to Indicate Requirement
Levels", RFC 2219, March 1997

[RFC2222] Myers J., "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997

[RFC2245] Newman C., "Anonymous SASL Mechanism", RFC 2245, November 1997

[RFC-2104] Krayczyk H., Bellare M., Canetti R., "HMAC: Keyed-Hashing for
Message Authentication", RFC 2104, February 1997

[RFC-2195] Klensin J., Catoe R., Krumviede P., "IMAP/POP AUTHorize
Extension for Simple Challenge/Response", RFC 2195, September 1997

[STARTTLS] Newman C., "Using TLS with IMAP4, POP3, and ACAP", Internet-
Draft draft-newman-tls-imappop-03, March 1998

Appendix A – "IPP" Scheme Registration

The following IPP scheme proposal is meant to start debate on IPP
schemed URLs. The scheme suggested below would be advertised by servers
to potential clients.

IPP://host.domain[:port]

Clients attempting access to a resource identified by the "IPP" scheme
MUST utilize the IPP transport mapping specified by this document.

