
1Copyright © 2022 The Printer Working Group. All rights reserved. 1

NISTIR 8397
Guidelines on Minimum Standards for

Developer Verification of Software



2Copyright © 2022 The Printer Working Group. All rights reserved.

Executive Order on Improving the 
Nation’s Cybersecurity

2

Issued May 12, 2021 by President Biden

One Key Areas Covered by this Executive Order: Enhancing 
Software Supply Chain Security

• NIST, in consultation with other named federal agencies, is 
directed to solicit “input from the Federal Government, private 
sector, academia, and other appropriate actors to identify 
existing or develop new standards, tools, and best practices for 
complying with the standards, procedures, or criteria. The 
guidelines shall include criteria that can be used to evaluate 
software security, include criteria to evaluate the security 
practices of the developers and suppliers themselves, and 
identify innovative tools or methods to demonstrate 
conformance with secure practices”

• To respond to this requirement NIST created NISTIR 8397
Guidelines on Minimum Standards for Developer Verification of 
Software



3Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

3

• Recommends minimum standards (not “best practices”) of 
software verification by software producers 

• Based on assumption no single software security verification 
standard can encompass all types of software and be both 
specific and prescriptive while supporting efficient and effective 
verification

• Recommends guidelines for software producers to use in 
creating their own processes

• Provides for the process to be very specific and tailored
to the software products, technology (e.g., language and 
platform), toolchain, and development lifecycle model 



4Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

4

Key Terms

• Software: Executable computer programs

• Testing: Any technique or procedure performed on the software 
itself to gain assurance that the software will perform as desired, 
has the necessary properties, and has no important vulnerabilities

• Verification: Includes methods such as static analysis and code 
review, in addition to dynamic analysis or running programs

• Verification assumes standard language semantics, correct and robust 
compilation or interpretation engines, and a reliable and accurate execution 
environment, such as containers, virtual machines, operating systems, and 
hardware. Verification may or may not be performed in the intended 
operational environment.

• Includes vendor and developer testing 



5Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

5

SCOPE
• Includes “software source code” and software in general 

including binaries, bytecode, and executables, such as libraries 
and packages

• Does not include specialized testing regimes such as real-time 
software, firmware (microcode), embedded/cyberphysical
software, machine learning (ML) or neural net code

• Excludes ancillary yet vital material such as configuration files, 
file or execution permissions, operational procedures, and 
hardware



6Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

6

Minimum Standards for Developer Testing

• #1. Do Threat Modeling

• Use threat modeling early in order to identify design-level security 
issues and to focus verification

• Software needs should drive the threat modeling method(s) used. 

• Should be done multiple times during development, especially when 
developing new capabilities, to capture new threats and improve 
modeling 

• Test cases should be more comprehensive in areas of greatest 
consequences, as indicated by the threat assessment or threat 
scenarios. 

• Threat modeling can also indicate which input vectors are of most 
concern. Testing variations of these particular inputs should be 
higher priority. 

• Threat modeling may reveal that certain small pieces of code, 
typically less than 100 lines, pose significant risk and require 
additional code review



7Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

7

Minimum Standards for Developer Testing
• #2. Do Automated Testing

• Can be as simple as a script that reruns static analysis, then runs 
the program on a set of inputs, captures the outputs, and compares 
the outputs to expected results

• Can be as sophisticated as a tool that sets up the environment, runs 
the test, then checks for success. 

• Recommend automated verification to:

• ensure that static analysis does not report new weaknesses,

• run tests consistently,

• check results accurately, and

• minimize the need for human effort and expertise.

• Automated verification can be integrated into the existing workflow 
or issue tracking system

• Because verification is automated, it can be repeated often, for 
instance, upon every commit or before an issue is retired



8Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

8

Minimum Standards for Developer Testing

• #3. Code-Based, or Static, Analysis

• Divided into two approaches: 1) code-based or static analysis (e.g., 

Static Application Security Testing—SAST) and 2) execution-based or 

dynamic analysis (e.g., Dynamic Application Security Testing—

DAST).

• Pure code-based analysis is independent of program execution. 

Questions that a scanner may address include:

• Does this software always satisfy the required security policy?

• Does it satisfy important properties?

• Would any input cause it to fail?

• Recommend using a static analysis tool to check code for many 

kinds of vulnerabilities and for compliance with the organization’s 

coding standards. 



9Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

9

Minimum Standards for Developer Testing
• #4. Review for Hardcoded Secrets

• Recommend using heuristic tools to examine the code for hardcoded 
passwords and private encryption keys. Heuristic tools may assist by 
identifying small sections of code that are suspicious, possibly triggering 
manual review

• #5. Run with Language-Provided Checks and Protection

• Use Programming languages, both compiled and interpreted, provided many 
built-in checks and protections both during development and in the software 
shipped 

• Enable hardware and operating system security and vulnerability mitigation
mechanisms, too 

• For software written in languages that are not memory-safe, consider using 
techniques that enforce memory safety

• Interpreted languages typically have significant security enforcement built-in, 
although additional measures can be enabled. In addition, you may use a 
static analyzer, sometimes called a “linter”, which checks for dangerous 
functions, problematic parameters, and other possible vulnerabilities



10Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

10

Minimum Standards for Developer Testing

• #6. Black Box Test Cases

• “Black box” tests are not based on the implementation or the 
particular code. Instead, they are based on functional specifications 
or requirements, negative tests (invalid inputs and testing what the 
software should not do), denial of service and overload, described in 
Sec. 3.8, input boundary analysis, and input combinations

• Tests cases should be more comprehensive in areas indicated as 
security sensitive or critical by general security principles

• If you can formally prove that classes of errors cannot occur, some 
of the testing described above may not be needed

• Additionally, rigorous process metrics may show that
the benefit of some testing is small compared to the cost



11Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

11

Minimum Standards for Developer Testing

• #7. Code-Based Test Cases

• Code-based, or structural, test cases are based on the 
implementation, that is, the specifics of the code

• Code-based test cases may also come from coverage metrics. E.g., 
the software may record which branches, blocks, function calls, etc.,
in the code are exercised or “covered”. Tools then analyze this 
information to compute metrics. Additional test cases can be added 
to increase coverage

• Most code should be executed during unit testing

• Recommend that executing the test suite achieves a minimum of 
80% statement coverage 



12Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

12

Minimum Standards for Developer Testing
• #8. Historical Test Cases

• Some test cases are created specifically to show the presence (and later, the 
absence) of a bug. These are sometimes called “regression tests”

• An even better option is adoption of an assurance approach, such as choice 
of language, that precludes the bug entirely

• Inputs recorded from production operations may also be good sources of test 
cases

• #9. Fuzzing

• Recommend using a fuzzer, which performs automatic active testing; fuzzers
create huge numbers of inputs during testing. Typically, only a tiny fraction of 
the inputs trigger code problems. In addition, these tools only perform a 
general check to determine that the software handled the test correctly. 
Typically, only broad output characteristics and gross behavior, such as 
application crashes, are monitored

• The advantage of generality is that such tools can try an immense number of 
inputs with minimal human supervision. The tools can be programmed with 
inputs that often reveal bugs, such as very long or empty inputs and special 
characters



13Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

13

Minimum Standards for Developer Testing

• #10. Web Application Scanning

• If the software provides a web service, use a dynamic application security 
testing (DAST) tool, e.g., web application scanner (IAST) tool to detect 
vulnerabilities. Web app scanners create inputs as they run. A web app 
scanner monitors for general unusual behavior. A hybrid or IAST tool may 
also monitor program execution for internal faults. When an input causes 
some detectable anomaly, the tool can use variations of the input to probe 
for failures

• #11. Check Included Software Components

• The components of the software must be continually monitored against 
databases of known vulnerabilities; a new vulnerability in existing code may 
be reported at any time

• A Software Composition Analysis (SCA) or Origin Analyzer (OA) tool can help 
you identify what open-source libraries, suites, packages, bundles, kits, etc., 
the software uses and noting software that is out of date or has known 
vulnerabilities



14Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

14

Beyond Software Verification 

• Good Software Development Practices

• Follow the recommendations in NIST Special Publication 800-218 Secure 
Software Development Framework (SSDF) Version 1.1: 
Recommendations for Mitigating the Risk of Software Vulnerabilities

• Enterprises with secure development should include the following 
characteristics:

• Create a culture where security is everyone’s responsibility. This includes 
integrating a security specialist into the development team, training all 
developers to know how to design and implement secure software, and 
using automated tools that allow both developers and security staff to 
track vulnerabilities

• Uses tools to automate security checking, often referred to as Security
as Code

• Tracks threats and vulnerabilities, in addition to typical system metrics

• Shares software development task information, security threat, and
vulnerability knowledge between the security team, developers, and 
operations personnel



15Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

15

Beyond Software Verification 

• Good Software Installation and Operation Practices
• Configuration files: 

• Software releases should include secure default settings and caveats 
regarding deviations from those settings. 

• Security verification should include all valid settings and (possibly) 
assurance that invalid settings will be caught by run-time checks. 

• The acquirer should be warned or notified that settings other than those 
explicitly permitted will invalidate developer’s security assertions

• File Permissions: 

• File ownership and permissions to read, write, execute, and delete
files need to be established using the principle of least privilege. 

• The ability to change file permissions needs to be
restricted to explicitly authorized subjects that are authenticated in a 
manner that is commensurate with the impact of a compromise of the 
software

• The role of file permissions in maintaining security assertions needs to be 
explicit



16Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

16

Beyond Software Verification 

• Good Software Installation and Operation Practices (cont’d)

• Network configuration: 

• Verification needs to cover all valid network configuration 
settings and (possibly) provide assurance that invalid settings 
will be caught by run-time checks 

• The role of network configuration in scoping the applicability of 
security assertions needs to be explicit

• Operational configuration: 

• Verification needs to be conducted in an environment that is 
consistent with the anticipated operational configurations

• Any dependence of the security assertions on implementing 
software or other aspects of operational configuration needs to 
be made explicit by the developer 

• Supply chain integrity must be maintained



17Copyright © 2022 The Printer Working Group. All rights reserved.

NISTIR 8397
Guidelines on Minimum Standards for
Developer Verification of Software

17

Beyond Software Verification 

• Additional Software Assurance Technology

• Nearer-term advances that may add to security assurance based on verification include:

• Applying machine learning to reduce false positives from automated security 
scanning tools and to increase the vulnerabilities that these tools can detect

• Adapting tools designed for automated web interface tests, e.g., Selenium, to 
produce security tests for applications

• Improving scalability of model-based security testing for complex systems

• Improving automated web-application security assessment tools with respect to:

• Session state management

• Script parsing

• Logical flow

• Custom uniform resource locators (URLs)

• Privilege escalation

• Applying observability tools to provide security assurance in cloud environment

• Adapting current security testing to achieve cloud service security assurance


