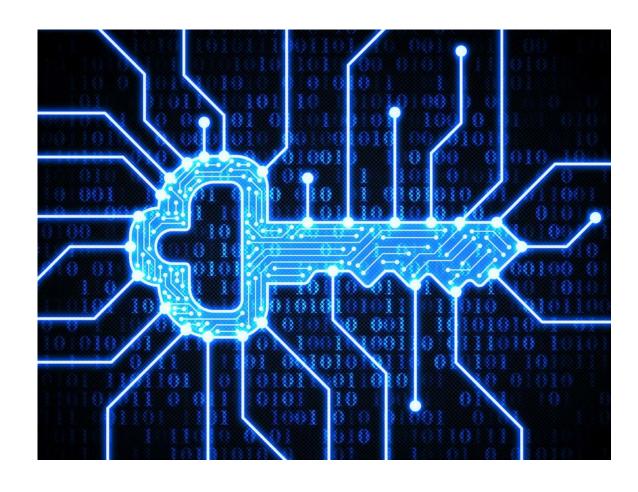
CCDB Crypto Working Group

Presentation of Crypto SFR Catalogue


Federal Office for Information Security (BSI)
National Information Assurance Partnership (NIAP)

Agenda

- Who are we
- Crypto SFR catalogue
- Next steps and future plans

Who are we

CCDB Crypto Working Group

- Tasked by the CCDB to harmonize the specification and evaluation of crypto mechanisms in collaborative Protection Profiles (cPPs) and product evaluations within CCRA
- -Chaired by BSI, Germany and NIAP, US
- -Further active members: FMV/CSEC, Sweden



Major Achievements

- Definition of new crypto SFRs and their introduction to CC:2022
 - -FCS_CKM.5, FCS_RBG.1/.2/.3/.4/.5/.6, FTP_PRO.1/.2/.3

 Delivery of a tailored set of crypto SFRs and corresponding evaluation methodology for the USB cPP and corresponding SD

Catalogue overview – 1 of 3

- FCS_CKM.1/AKG and /SKG Cryptographic Key Generation
- FCS_CKM.2 Cryptographic Key Distribution
- FCS_CKM_EXT.3 Cryptographic Key Access
- FCS_CKM.5 Cryptographic Key Derivation
- FCS_CKM.6 Timing and Event of Cryptographic Key Destruction
- FCS_CKM_EXT.7 Cryptographic Key Agreement
- FCS_CKM_EXT.8 Password-based Key Derivation

Catalogue overview – 2 of 3

- FCS_COP.1/SKC Cryptographic Operation (Symm Key Crypto)
- FCS_COP.1/Hash Cryptographic Operation (Hashing)
- FCS_COP.1/KeyedHash Cryptographic Operation (Keyed Hash)
- FCS_COP.1/CMAC Cryptographic Operation (CMAC)
- FCS_COP.1/SigGen Cryptographic Operation (Signature Generation)
- FCS_COP.1/SigVer Cryptographic Operation (Signature Verification)
- FCS_COP.1/KeyEncap Cryptographic Operation (Key Encapsulation)
- FCS_COP.1/KeyWrap Cryptographic Operation (Key Wrapping)

Catalogue overview – 3 of 3

- FCS_ETC_EXT.1 Export of Key
- FCS_ITC_EXT.1 Import of Key
- FCS_KYC_EXT.1 Cryptographic Key Chaining
- FCS_OTV_EXT.1 One-Time Value
- FCS_RGB.1 to FCS_RBG.6 Random Bit Generation

Example 1: FCS_CKM.2 – Cryptographic Key Distribution

FCS_CKM.2.1

The TSF shall distribute cryptographic keys in accordance with a specified cryptographic key distribution method [selection: key encapsulation, key wrapping, encrypted channels] that meets the following: [none].

Application Note:

If key encapsulation is chosen, then FCS_COP.1/KeyEncap SHALL be included. If key wrapping is chosen, then FCS_COP.1/KeyWrap SHALL be included. If encrypted channels is chosen, then FTP_PRO.1 SHALL be included.

Guidance:

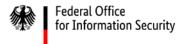
Key distribution (or key transport) is a key establishment scheme in which one party creates a key and sends it to another party.

Example 2: FCS_COP.1/SKC Cryptographic Operation - Symmetric-Key Cryptography

FCS_COP.1.1/SKC

The TSF shall perform **symmetric-key encryption/decryption** in accordance with a specified cryptographic algorithm [selection: cryptographic algorithm] and cryptographic key sizes [selection: cryptographic key sizes] that meet the following: [selection: list of standards].

Identifier	Cryptographic Algorithm	Cryptographic Key Sizes	List of Standards
AES-CBC	AES in CBC mode	[selection:	[selection:_ISO/IEC 18033-3 (Sub Clause
	with non-repeating	<u>128 bits,</u>	5.2), FIPS PUB 197] [AES]
	and unpredictable IVs	<u>192 bits,</u>	[selection: ISO/IEC 10116:2017 (Clause 7),
		<u>256 bits</u>]	NIST SP 800-38A] [CBC]



Examples 3: FCS_CKM_EXT.8 – Password-Based Key Derivation

FCS_CKM_EXT.8.1
The TSF shall perform password-based key derivation functions in accordance with a specified cryptographic algorithm [HMAC-[selection: SHA-256, SHA-384, SHA-512]], with iteration count of [assignment: number of iterations] using a randomly generated salt of length [assignment: length of salt] and output cryptographic key sizes [selection: 128, 192, 256] bits that

meet the following standard: [NIST SP 800-132 Section 5.3 (PBKDF2)].

How to use the catalogue

Intention of the catalogue

- -Supporting Document Guidance, i.e. not mandatory
- -Filled out operations (partly in tables) propose well known algorithms with key length and standards
- Not a closed list cPPs/PPs/STs can have more or other rows
- -Catalogue serves as a model for a harmonized presentation of SFRs
- -If you deviate from the catalogue, talk to your scheme in advance

How to use the catalogue

- How to use the tables
 - Copy and paste the rows that you want
 - Copy only complete rows
 - Do not only reference to the catalogue

Operations from CC:2022 are changed from assignments to selections

Next steps

- Received 10 sets of comments (more that 250 comments) from different organizations (schemes, iTCs, labs, developers, standardization organizations) during public review of the draft catalogue
- Finalize review of comments and provide response
- Publish the revised catalogue after CCDB approval in spring 2024

Future Plans

Develop evaluation methodology for the SFRs from the catalogue

• Extend the catalogue, e.g. with filled out operations for FTP_PRO

Post-quantum cryptography

Contact

• Referat-sz22@bsi.bund.de

NIAP@niap-ccevs.org

Thank you for the attention!

Any questions?

