IPP 3D Printing Extensions 0.1
(3D)

Status: Initial

Abstract: This white paper defines an extension to the Internet Printing Protocol that supports printing of physical objects by Additive Manufacturing devices such as 3D printers.

This document is a White Paper. For a definition of a "White Paper", see:

This document is available electronically at:

Copyright © 2015 The Printer Working Group. All rights reserved.

Title: IPP 3D Printing Extensions (3D)

The material contained herein is not a license, either expressed or implied, to any IPR owned or controlled by any of the authors or developers of this material or the Printer Working Group. The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and the Printer Working Group and its members hereby disclaim all warranties and conditions, either expressed, implied or statutory, including, but not limited to, any (if any) implied warranties that the use of the information herein will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.
Table of Contents

1. Introduction ...6

2. Terminology ...6

2.1 Terms Used in This Document ...6

2.2 Acronyms and Organizations ..7

3. Rationale for IPP 3D Printing Extensions ...8

3.1 Use Cases ..8

3.1.1 Print a 3D Object ...8

3.1.2 Print a 3D Object Using Loaded Materials ..8

3.1.3 Print a 3D Object with Multiple Materials ..8

3.1.4 View a 3D Object During Printing ..9

3.2 Exceptions ..9

3.2.1 Clogged Extruder ...9

3.2.2 Extruder Temperature Out of Range ..9

3.2.3 Extruder Head Movement Issues ...9

3.2.4 Filament Feed Jam ..9

3.2.5 Filament Feed Skip ...9

3.2.6 Material Empty ...9

3.2.7 Material Adhesion Issues ..10

3.2.8 Print Bed Temperature Out of Range ..10

3.2.9 Print Bed Not Clear ...10

3.3 Out of Scope ..10

3.4 Design Requirements ...10

4. Technical Solutions/Approaches ..11

4.1 High-Level Model ..12

4.1.1 Build Platforms ...12

4.1.2 Cameras ...12

4.1.3 Cutters ..12

4.1.4 Fans ...12

4.1.5 Lamps ..12

4.1.6 Lasers ..12

4.1.7 Markers (or Extruders) ..12

4.1.8 Motors ...12

4.1.9 Reservoirs ..12

4.2 Coordinate System ..13

5. New Attributes ..13

5.1 Job Template Attributes ...13

5.1.1 materials-col (1setOf collection) ..13

5.1.2 print-fill-density (integer(0:100)) ...15

5.1.3 print-fill-thickness (integer(0:MAX)) ..15

5.1.4 print-layer-thickness (integer(0:MAX)) ...15

5.1.5 print-rafts (type2 keyword) ..15

5.1.6 print-shell-thickness (integer(0:MAX)) ...16

5.1.7 print-supports (type2 keyword) ..16

5.1.8 printer-bed-temperature (integer | no-value) ...16

5.1.9 printer-chamber-temperature (integer | no-value) ...16
5.2.10 printer-fan-speed (integer(0:100))...16
5.2.11 print-layer-order (type1 keyword)...18
5.2.12 print-layer-thickness-default (integer(0:MAX))..18
5.2.13 print-layer-thickness-supported (1setOf (integer(0:MAX)))
 rangeOfInteger(0:MAX))..18
5.2.14 print-rafts-default (type2 keyword)...18
5.2.15 print-rafts-supported (1setOf type2 keyword)
 rangeOfInteger(0:MAX))..18
5.2.16 print-shell-thickness-default (integer(0:MAX))...18
5.2.17 print-shell-thickness-supported (1setOf (integer(0:MAX)))
 rangeOfInteger(0:MAX))..18
5.2.18 print-supports-default (type2 keyword)..18
5.2.19 print-supports-supported (1setOf type2 keyword)..18
5.2.20 printer-bed-temperature-default (integer | no-value)
 rangeOfInteger(0:MAX))..18
5.2.21 printer-bed-temperature-supported (1setOf (integer | rangeOfInteger))
 rangeOfInteger(0:MAX))..19
5.2.22 printer-chamber-temperature-default (integer | no-value)
 rangeOfInteger(0:MAX))..19
5.2.23 printer-chamber-temperature-supported (1setOf (integer | rangeOfInteger))
 rangeOfInteger(0:MAX))..19
5.2.24 printer-fan-speed-default (integer(0:MAX))...19
5.2.25 printer-fan-speed-supported (boolean)..19
5.2.26 printer-head-temperature-supported (1setOf integer | rangeOfInteger)
 rangeOfInteger(0:MAX))..19
5.2.27 filament-retraction-distance-supported (1setOf (integer(0:MAX))
 rangeOfInteger(0:MAX))..19
5.2.28 filament-speed-supported (1setof (integer(0:MAX) | rangeOfInteger(0:MAX)))
5.2.29 print-speed-supported (1setOf integer(1:MAX) | rangeOfInteger(1:MAX))........19
5.2.30 printer-accuracy-supported (collection)...20
5.2.31 printer-volume-supported (collection)..20
5.3 Printer Status Attributes ...20
5.3.1 printer-bed-temperature-current (integer | no-value).......................................20
5.3.2 printer-chamber-temperature-current (integer | no-value).................................20
5.3.3 printer-fan-speed-current (integer(0:100))...20
5.3.4 printer-head-temperature-current (1setOf (integer | no-value)).......................20
5.4 Other Potential Attributes ...20
6. New Values for Existing Attributes ..21
6.1 ipp-features-supported (1setOf type2 keyword)...21
6.2 printer-state-reasons (1setOf type2 keyword)..21
7. Object Definition Languages (ODLs) .. 22
6.1 Additive Manufacturing Format (AMF) ... 22
6.2 Standard Tessellation Language (STL) .. 22
6.3 G-Code .. 22
6.4 S3G/X3G File Format .. 22
8. Internationalization Considerations .. 23
9. Security Considerations ... 24
10. References ... 24
11. Author’s Address .. 26
12. Change History .. 27

12.1 April 13, 2014 .. 27
12.2 April 5, 2015 .. 27
12.3 January 23, 2015 ... 27

List of Figures
Figure 1 - Typical Build Platform Coordinate System ... 13

List of Tables
Table 1 - 3D Printer Subunits ... 11
1. Introduction

This white paper defines an extension to the Internet Printing Protocol (IPP) that supports printing of physical objects by Additive Manufacturing devices such as three-dimensional (3D) printers. The attributes and values defined in this document have been prototyped using the CUPS software [CUPS].

The primary focus of this document is on popular Fused Deposition Modeling (FDM) devices that melt and extrude ABS and PLA filaments in layers to produce a physical, 3D object. However, the same attributes can be used for other types of 3D printers that use different methods and materials such as Laser Sintering of powdered materials and curing of liquids using ultraviolet light.

This document also does not address the larger issue of choosing a common Object Definition Language (ODL) for interoperability, however there are suggested MIME media type names listed in section 7 for several formats in common use.

2. Terminology

2.1 Terms Used in This Document

Additive Manufacturing: A 3D printing process where material is progressively added to produce the final output.

Binder Jetting: A 3D printing process that uses a liquid binder that is jetted to fuse layers of powdered materials.

Digital Light Processing: A 3D printing process that uses light with a negative image to selectively cure layers of a liquid material.

Fused Deposition Modeling: A 3D printing process that extrudes a molten material to draw layers.

Laser Sintering: A 3D printing process that uses a laser to melt and fuse layers of powdered materials.

Material Jetting: A 3D printing process that jets the actual build materials in liquid or molten state to produce layers.

Selective Deposition Lamination: A 3D printing process that laminates cut sheets of material.

Stereo Lithography: A 3D printing process that uses a laser to cure and fuse layers of liquid materials.
Subtractive Manufacturing: A 3D printing process where material is progressively removed to produce the final output.

2.2 Acronyms and Organizations

CNC: Computer Numerical Control
DLP: Digital Light Processing
FDM: Fused Deposition Modeling
IANA: Internet Assigned Numbers Authority, http://www.iana.org/
SDL: Selective Deposition Lamination
SL: Stereo Lithography
3. Rationale for IPP 3D Printing Extensions

Existing specifications define the following:

1. IPP/2.0 Second Edition [PWG5100.12] defines version 2.0, 2.1, and 2.2 of the Internet Printing Protocol which defines a standard operating and data model, interface protocol, and extension mechanism to support traditional Printers;
2. IPP Everywhere [PWG5100.14] defines a profile of existing IPP specifications, standard Job Template attributes, and standard document formats;
4. The SLC File Specification [STLFORMAT] defines a file format (commonly called "STL files") for describing 3D object with a single material;
5. The Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines [RS274D] defines the "G-code" format that is commonly used by 3D printers; and
6. The S3G protocol [S3G] defines a simple network protocol and file format for controlling 3D printers.

Therefore, this IPP 3D Printing Extensions (3D) document should define IPP attributes, values, and operations needed to support printing of 3D objects, status monitoring of 3D printers and print jobs, and configuration of 3D printer characteristics and capabilities.

3.1 Use Cases

3.1.1 Print a 3D Object

Jane is viewing a 3D object and wishes to print it. After initiating a print action, she selects a 3D printer on the network, specifies material and print settings, and submits the object for printing.

3.1.2 Print a 3D Object Using Loaded Materials

Jane is viewing a 3D object and wishes to print it. After initiating a print action, she selects a 3D printer on the network that has the material(s) she wishes to use, specifies additional print settings, and submits the object for printing.

3.1.3 Print a 3D Object with Multiple Materials

Jane wants to print a multi-material object on a single-material Printer. Jane uses software on her Client device to create Document data that instructs the Printer to pause printing and provide status information at specific layers so that she can change materials at the Printer and resume printing with the new material.
3.1.4 View a 3D Object During Printing

Jane has submitted a 3D print Job that will take 4 hours to complete. She can visually monitor the progress of the Job through a web page provided by the Printer.

3.2 Exceptions

3.2.1 Clogged Extruder

While printing a 3D object, the extruder becomes clogged. The printer stops printing and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.

3.2.2 Extruder Temperature Out of Range

While printing a 3D object, the extruder temperature goes out of range for the material being printed. The printer pauses printing until the temperature stabilizes and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.

3.2.3 Extruder Head Movement Issues

While printing a 3D object, the extruder head movement becomes irregular. The Printer stops printing and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.

3.2.4 Filament Feed Jam

While printing a 3D object, the filament jams and cannot be fed into the extruder. The printer stops printing and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.

3.2.5 Filament Feed Skip

While printing a 3D object, the filament extrusion rate is insufficient to maintain proper printing. The printer stops printing and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.

3.2.6 Material Empty

While printing a 3D object, the printer runs out of the printing material. The printer pauses printing until more material is loaded and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.
3.2.7 Material Adhesion Issues

While printing a 3D object, the printed object releases from the build platform or the current layer is not adhering to the previous one. The printer stops printing and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.

3.2.8 Print Bed Temperature Out of Range

While printing a 3D object, the print bed temperature goes out of the requested range. The printer pauses printing until the temperature stabilizes and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert.

3.2.9 Print Bed Not Clear

When starting to print a 3D object, the Printer detects that the build platform is not empty/clear. The Printer stops printing and sets the corresponding state reason to allow Jane’s Client device to discover the issue and display an appropriate alert. The Printer starts printing once the build platform is cleared.

3.3 Out of Scope

The following are considered out of scope for this document:

1. Definition of new file formats; and
2. Support for Subtractive Manufacturing technologies such as CNC milling machines.

3.4 Design Requirements

The design requirements for this document are:

1. Define attributes and values to describe supported and loaded (ready) materials used for FDM; and
2. Define attributes and values to describe FDM printer capabilities and state

The design recommendations for this document are:

1. Support 3D printing technologies other than FDM
4. Technical Solutions/Approaches

Current 3D printers offer limited connectivity and status monitoring capabilities. Many printers simply print G-code files from SD memory cards, with all interaction and status monitoring happening at the printer's console.

Makerbot Industries uses a proprietary protocol [S3G] and file format that generalizes some aspects of the interface between a host device and 3D printer. However, this solution is highly specific to FDM printing and does not offer any spooling or security functionality.

Various other proprietary protocols and interfaces are also in use, typically based on the USB serial protocol class for direct connection to a host device. And there are a number of Cloud-based solutions emerging that utilize a proxy device that communicates with the Cloud and 3D printer.

Given that the 3D printing industry and technologies are still undergoing a great deal of change and development, certain aspects of 3D printing may be difficult or infeasible to standardize. However, a stable, reliable, and secure interface between host device (IPP Client) and 3D printer (IPP Printer) can be defined today in a way that allows for future changes to be incorporated without difficulty.

4.1 High-Level Model

IPP [RFC2911] and the IETF Printer MIB [RFC3805] already define a comprehensive model for the operation and data elements of a typical 2D printer. The IPP Job processing model matches how 3D printers process Jobs and Documents. However, more types of subunits are used in a 3D printer, requiring additions to the model and state values. Table 1 lists the subunits of 3D printers for different technologies.

Table 1 - 3D Printer Subunits

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Platforms</td>
<td>All</td>
</tr>
<tr>
<td>Cameras</td>
<td>All</td>
</tr>
<tr>
<td>Cutters</td>
<td>SDL</td>
</tr>
<tr>
<td>Doors</td>
<td>All</td>
</tr>
<tr>
<td>Fans</td>
<td>FDM</td>
</tr>
<tr>
<td>Input Trays</td>
<td>SDL</td>
</tr>
<tr>
<td>Lamps</td>
<td>DLP</td>
</tr>
<tr>
<td>Lasers</td>
<td>Laser Sintering, SL</td>
</tr>
<tr>
<td>Marker Supplies</td>
<td>All</td>
</tr>
<tr>
<td>Markers (or Extruders)</td>
<td>Many</td>
</tr>
<tr>
<td>Media Path</td>
<td>SDL</td>
</tr>
<tr>
<td>Motors</td>
<td>All</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>DLP, Laser Sintering, SL</td>
</tr>
</tbody>
</table>
4.1.1 Build Platforms

Build Platforms hold the printed object. The platform typically moves up or down during printing as layers are applied, although in some cases it moves along all three axis.

4.1.2 Cameras

Cameras typically show the Build Platforms, offering a visual progress/status reporting for remote users.

4.1.3 Cutters

Cutters are used to trim support material on printed objects and/or remove regions of media that are not part of the final printed object.

4.1.4 Fans

Fans are used to cool printed material and maintain proper extruder and material temperature.

4.1.5 Lamps

Lamps are used by DLP printers to provide an ultraviolet light source for curing the liquid material while printing a layer. Lamps are also used to illuminate the Build Platforms.

4.1.6 Lasers

Lasers are used by Laser Sintering and Stereo Lithography (SL) printers to fuse powdered material or cure liquid material while printing a layer.

4.1.7 Markers (or Extruders)

Markers can be traditional subunits where an image is printed on sheets of paper (SDL), extruders that place material onto the Build Platform or previous layer, or projectors that display an inverse image on the surface of a liquid material (DLP).

4.1.8 Motors

Motors are used to move the Build Platforms and (in some cases) move the Markers.

4.1.9 Reservoirs

Reservoirs hold liquid or powdered material used to create the printed object.
4.2 Coordinate System

3D printers operate in three dimensions and thus have three axes of movement. Figure 1 shows the coordinate system where the X axis represents the width of the object, the Y axis represents the depth of the object, and the Z axis represents the height of the object.

![Figure 1 - Typical Build Platform Coordinate System](image)

Filament usage by extrusion Printers is sometimes also modeled as an additional "E" axis, e.g., E1 for the first filament, E2 for the second filament, etc.

5. New Attributes

5.1 Job Template Attributes

5.1.1 materials-col (1setOf collection)

This Job Template attribute defines the materials to be used for the Job. When specified, the Printer validates the requested materials both when the Job is created and when it enters the 'processing' state. If the requested materials are not loaded, the 'material-needed' keyword is added to the Printer's "printer-state-reasons" values and the Job is placed in the 'processing-stopped' state.

The Client typically supplies "materials-col" values matching those returned in the "material-cols-database" (section 5.2.1) or "materials-col-ready" (section 5.2.3) Printer Description attributes.
5.1.1.1 material-color (type2 keyword)

This member attribute provides a PWG media color value representing the color of the material.

5.1.1.2 material-diameter (integer)

This member attribute provides the diameter of the printed material in nanometers. This attribute is only applicable for Printers that extrude their material.

5.1.1.3 material-feed-rate (integer)

This member attribute provides the material feed rate in nanometers per second. This attribute is only applicable for Printers that extrude their material.

[Editor's note: Some feedback indicates that we might want to specify feed rate using volume...]

5.1.1.4 material-key (keyword)

This member attribute provides an unlocalized name of the material that can be localized using the strings file referenced by the "printer-strings-uri" Printer attribute.

5.1.1.5 material-name (name(MAX))

This member attribute provides a localized name of the material.

5.1.1.6 material-type (type2 keyword)

This member attribute specifies the type of material. Values include:

- 'abs_filament': Acrylonitrile Butadiene Styrene (ABS) filament.
- 'chocolate_powder': Chocolate powder.
- 'gold_powder': Gold (metal) powder.
- 'photopolymer-resin_liquid': Photopolymer (liquid) resin.
- 'pla_filament': Polylactic Acid (PLA) filament.
- 'pla-conductive_filament': Conductive PLA filament.
- 'pla-flexible_filament': Flexible PLA filament.
- 'silver_powder': Silver (metal) powder.

[Editor's note: This list needs to be expanded significantly...]
5.1.1.7 filament-retraction-distance (integer(0:MAX))

This member attribute specifies the filament retraction distance in nanometers. This attribute is only applicable to FDM Printers.

5.1.1.8 filament-retraction-speed (integer(0:MAX))

This member attribute specifies the filament retraction speed in nanometers per second. This attribute is only applicable to FDM Printers.

5.1.1.9 extruder-temperature (integer | rangeOfInteger)

This member attribute specifies the desired extruder temperature (or range of temperatures) in degrees Celsius. This attribute is only applicable to Printers that extrude their material.

5.1.1.10 print-speed (integer(1:MAX))

This member attribute specifies the print speed in nanometers per second.

5.1.2 print-fill-density (integer(0:100))

This Job Template attribute specifies the fill density of interior regions in percent.

5.1.3 print-fill-thickness (integer(0:MAX))

This Job Template attribute specifies the thickness of any fill walls in nanometers, with 0 representing the thinnest possible walls.

Editor's note: One comment requested speed/layer thickness attributes for infill regions. Right now print speed is a materials-col value - do we add a print-fill-material attribute to specify the fill material (which then gives us the speed), or do we move print-speed to a top-level attribute and then have print-fill-speed and print-shell-speed?

5.1.4 print-layer-thickness (integer(0:MAX))

This Job Template attribute specifies the thickness of each layer in nanometers, with 0 representing the thinnest possible layers.

5.1.5 print-rafts (type2 keyword)

This Job Template attribute specifies whether to print brims, rafts, or skirts under the object. Values include:

'none': Do not print brims, rafts, or skirts.

brim-N*: Print brims using the Nth material, where N is an integer from 1 to the number of materials specified for the Job.
raft-N': Print rafts using the Nth material, where N is an integer from 1 to the number of materials specified for the Job.

skirt-N': Print skirts using the Nth material, where N is an integer from 1 to the number of materials specified for the Job.

'standard': Print brims, rafts, and/or skirts using implementation-defined default parameters.

5.1.6 print-shell-thickness (integer(0:MAX))

This Job Template attribute specifies the thickness of exterior walls in nanometers, with 0 representing the thinnest possible wall.

5.1.7 print-supports (type2 keyword)

This Job Template attribute specifies whether to print supports under the object. Values include:

'none': Do not print supports.

'standard': Print supports using implementation-defined default parameters.

'material-N': Print supports using the Nth material, where N is an integer from 1 to the number of materials for the Job.

5.1.8 printer-bed-temperature (integer | no-value)

This Job Template attribute specifies the desired Build Platform temperature in degrees Celsius. The 'no-value' value is used to disable temperature control on the Build Platform.

5.1.9 printer-chamber-temperature (integer | no-value)

This Job Template attribute specifies the desired print chamber temperature in degrees Celsius. The 'no-value' value is used to disable temperature control in the print chamber.

5.1.10 printer-fan-speed (integer(0:100))

This Job Template attribute specifies the desired fan speed in percent of maximum. A value of 0 turns the fans off during printing.

5.2 Printer Description Attributes

5.2.1 materials-col-database (1setOf collection)

This Printer Description attribute lists the pre-configured materials for the Printer. Each value contains the corresponding "materials-col" member attributes and will typically reflect vendor and site ("third party") materials that are supported by the Printer.
5.2.2 materials-col-default (1setOf collection)
This Printer Description attribute lists the default materials that will be used if the "materials-col" Job Template attribute is not specified.

5.2.3 materials-col-ready (1setOf collection)
This Printer Description attribute lists the materials that have been loaded into the Printer. Each value contains the corresponding "materials-col" member attributes.

5.2.4 materials-col-supported (1setOf type2 keyword)
This Printer Description attribute lists the "materials-col" member attributes that are supported by the Printer.

5.2.5 material-diameter-supported (1setOf (integer | rangeOfInteger))
This Printer Description attribute lists the supported diameters (or ranges of diameters) of extruded material in nanometers.

5.2.6 material-feed-rate-supported (1setOf (integer | rangeOfInteger))
This Printer Description attribute lists the supported feed rates (or ranges of feed rates) in nanometers per second.

[Editor's note: Some feedback indicates that we might want to specify feed rate using volume...]

5.2.7 material-type-supported (1setOf type2 keyword)
This Printer Description attribute lists the supported material types for the Printer.

5.2.8 print-fill-density-default (integer(0:100))
This Printer Description attribute specifies the default "print-fill-density" value in percent.

5.2.9 print-fill-thickness-default (integer(0:MAX))
This Printer Description attribute specifies the default "print-fill-thickness" value in nanometers.

5.2.10 print-fill-thickness-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))
This Printer Description attribute lists the supported "print-fill-thickness" values (or ranges of values) in nanometers.
5.2.11 print-layer-order (type1 keyword)

This Printer Description attribute specifies the order of layers when printing, either 'top-to-bottom' or 'bottom-to-top'.

5.2.12 print-layer-thickness-default (integer(0:MAX))

This Printer Description attribute specifies the default "print-layer-thickness" value in nanometers.

5.2.13 print-layer-thickness-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))

This Printer Description attribute lists the supported values (or ranges of values) for the "print-layer-thickness" Job Template attribute.

5.2.14 print-rafts-default (type2 keyword)

This Printer Description attribute specifies the default "print-rafts" value.

5.2.15 print-rafts-supported (1setOf type2 keyword)

This Printer Description attribute lists the supported "print-rafts" values.

5.2.16 print-shell-thickness-default (integer(0:MAX))

This Printer Description attribute specifies the default "print-shell-thickness" value in nanometers.

5.2.17 print-shell-thickness-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))

This Printer Description attribute lists the supported "print-shell-thickness" values (or ranges of values) in nanometers.

5.2.18 print-supports-default (type2 keyword)

This Printer Description attribute specifies the default "print-supports" value.

5.2.19 print-supports-supported (1setOf type2 keyword)

This Printer Description attribute lists the supported "print-supports" values.

5.2.20 printer-bed-temperature-default (integer | no-value)

This Printer Description attribute specifies the default "printer-bed-temperature" value in degrees Celsius.
5.2.21 printer-bed-temperature-supported (1setOf (integer | rangeOfInteger))

This Printer Description attribute lists the supported "printer-bed-temperature" values (or ranges of values) in degrees Celsius.

5.2.22 printer-chamber-temperature-default (integer | no-value)

This Printer Description attribute specifies the default "printer-chamber-temperature" value in degrees Celsius.

5.2.23 printer-chamber-temperature-supported (1setOf (integer | rangeOfInteger))

This Printer Description attribute lists the supported "printer-chamber-temperature" values (or ranges of values) in degrees Celsius.

5.2.24 printer-fan-speed-default (integer(0:MAX))

This Printer Description attribute specifies the default "printer-fan-speed" value in percent.

5.2.25 printer-fan-speed-supported (boolean)

This Printer Description attribute specifies whether the "printer-fan-speed" Job Template attribute is supported.

5.2.26 printer-head-temperature-supported (1setOf integer | rangeOfInteger)

This Printer Description attribute specifies the supported "printer-head-temperature" values (or ranges of values) in degrees Celsius.

5.2.27 filament-retraction-distance-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))

This Printer Description attribute specifies the supported "filament-retraction-distance" values (or ranges of values) in nanometers.

5.2.28 filament-speed-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))

This Printer Description attribute specifies the supported "filament-speed" values (or ranges of values) in nanometers per second.

5.2.29 print-speed-supported (1setOf integer(1:MAX) | rangeOfInteger(1:MAX))

This Printer Description attribute lists the supported "print-speed" values (or ranges of values) in nanometers per second.
5.2.30 printer-accuracy-supported (collection)

This Printer Description attribute specifies the absolute accuracy of the Printer. The "x-accuracy (integer(1:MAX))", "y-accuracy (integer(1:MAX))", and "z-accuracy (integer(1:MAX))" member attributes specify the accuracy in nanometers along each axis.

5.2.31 printer-volume-supported (collection)

This Printer Description attribute specifies the maximum build volume supported by the Printer. The "x-dimension (integer(1:MAX))", "y-dimension (integer(1:MAX))", and "z-dimension (integer(1:MAX))" member attributes specify the size in millimeters along each axis.

5.3 Printer Status Attributes

5.3.1 printer-bed-temperature-current (integer | no-value)

This Printer Status attribute provides the current Build Platform temperature in degrees Celsius. If the Build Platform is not temperature controlled, the 'no-value' value is returned.

5.3.2 printer-chamber-temperature-current (integer | no-value)

This Printer Status attribute provides the current print chamber temperature in degrees Celsius. If the print chamber is not temperature controlled, the 'no-value' value is returned.

5.3.3 printer-fan-speed-current (integer(0:100))

This Printer Status attribute provides the current fan speed in percent.

5.3.4 printer-head-temperature-current (1setOf (integer | no-value))

This Printer Status attribute provides the current extruder head temperatures in degrees Celsius. The 'no-value' value is returned when the extruder head is not temperature controlled.

5.4 Other Potential Attributes

Based on existing 3D printer software, the following parameters could also be candidates for standardization:

1. Initial layer thickness in nanometers
2. Initial layer line width in percent
3. Dual extrusion overlap in nanometers
4. Travel speed in nanometers per second
5. Bottom layer speed in nanometers per second
6. Infill speed in nanometers per second
7. Outer shell speed in nanometers per second
6. New Values for Existing Attributes

6.1 ipp-features-supported (1setOf type2 keyword)

This document suggests (but does not register) the new value 'ipp-3d'.

6.2 printer-state-reasons (1setOf type2 keyword)

This document suggests (but does not register) the following new values:

- 'camera-failure': A camera is no longer working.
- 'cutter-at-eol': A cutter has reached its end-of-life and will need to be replaced soon.
- 'cutter-failure': A cutter has failed.
- 'cutter-near-eol': A cutter is near its end-of-life and may need to be replaced soon.
- 'extruder-failure': An extruder has failed and requires maintenance or replacement.
- 'extruder-jam': An extruder is jammed or clogged.
- 'fan-failure': A fan has failed.
- 'lamp-at-eol': A lamp has reached its end-of-life and will need to be replaced soon.
- 'lamp-failure': A lamp has failed.
- 'lamp-near-eol': A lamp is near its end-of-life and may need to be replaced soon.
- 'laser-at-eol': A laser has reached its end-of-life and will need to be replaced soon.
- 'laser-failure': A laser has failed.
- 'laser-near-eol': A laser is near its end-of-life and may need to be replaced soon.
- 'material-empty': One or more build materials have been exhausted.
- 'material-low': One or more build materials may need replenishment soon.
- 'material-needed': One or more build materials need to be loaded for a processing Job.
- 'motor-failure': A motor has failed.
'reservoir-empty': One or more reservoirs are empty.

'reservoir-low': One or more reservoirs are almost empty.

'reservoir-needed': One or more reservoirs are empty but need to be filled for a processing Job.

7. Object Definition Languages (ODLs)

This section provides information on several commonly used ODLs with either existing (registered) or suggested MIME media types.

7.1 Additive Manufacturing Format (AMF)

AMF [ISO52915] is a relatively new format that was designed as a replacement for the Standard Tessellation Language (STL). Its use has been hampered by the lack of a freely-available specification, but has several advantages over STL including:

1. Shared vertices which eliminates holes and other breaks in the surface geometry of objects,
2. Specification of multiple materials in a single file,
3. Curved surfaces can be specified, and
4. Coordinates use explicit units for proper output dimensions.

The suggested (but not registered) MIME media type is `model/amf`.

7.2 Standard Tessellation Language (STL)

STL [STLFORMAT] is widely supported by existing client software. The registered MIME media type is `application/sla`.

7.3 G-Code

The G-code [RS274] format has long been a common low-level format used by 3D printers, with higher level formats being processed on the Client to produce G-code. The suggested (but not registered) MIME media type is `application/g-code`.

7.4 S3G/X3G File Format

The S3G protocol [S3G] defines a simple protocol for communicating a binary encoding of G-code with a 3D printer. The encoding is also used as a low-level file format, typically using a "x3g" extension. The suggested (but not registered) MIME media type is `application/vnd.makerbot-s3g`.

Michael Sweet 2015-3-1 7:01 PM
Deleted: 'application

Michael Sweet 2015-4-5 5:13 PM
Deleted: S3G
Deleted: Protocol and
Deleted: network
Deleted: as well
Deleted: x

Deleted: 3G
Deleted: Protocol and
Deleted: network
Deleted: as well
Deleted: x
8. Internationalization Considerations

For interoperability and basic support for multiple languages, conforming implementations MUST support:

5. The Universal Character Set (UCS) Transformation Format -- 8 bit (UTF-8) [STD63] encoding of Unicode [UNICODE] [ISO10646]; and

6. The Unicode Format for Network Interchange [RFC5198] which requires transmission of well-formed UTF-8 strings and recommends transmission of normalized UTF-8 strings in Normalization Form C (NFC) [UAX15].

Unicode NFC is defined as the result of performing Canonical Decomposition (into base characters and combining marks) followed by Canonical Composition (into canonical composed characters wherever Unicode has assigned them).

WARNING – Performing normalization on UTF-8 strings received from IPP Clients and subsequently storing the results (e.g., in IPP Job objects) could cause false negatives in IPP Client searches and failed access (e.g., to IPP Printers with percent-encoded UTF-8 URIs now ‘hidden’).

Implementations of this document SHOULD conform to the following standards on processing of human-readable Unicode text strings, see:

- Unicode Bidirectional Algorithm [UAX9] – left-to-right, right-to-left, and vertical
- Unicode Line Breaking Algorithm [UAX14] – character classes and wrapping
- Unicode Normalization Forms [UAX15] – especially NFC for [RFC5198]
- Unicode Text Segmentation [UAX29] – grapheme clusters, words, sentences
- Unicode Identifier and Pattern Syntax [UAX31] – identifier use and normalization
- Unicode Character Encoding Model [UTR17] – multi-layer character model
- Unicode in XML and other Markup Languages [UTR20] – XML usage
- Unicode Character Property Model [UTR23] – character properties
- Unicode Conformance Model [UTR33] – Unicode conformance basis
- Unicode Collation Algorithm [UTS10] – sorting
- Unicode Locale Data Markup Language [UTS35] – locale databases
9. Security Considerations

In addition to the security considerations described in the IPP/1.1: Model and Semantics [RFC2911], the following sub-sections describe issues that are unique to 3D printing.

Implementations of this specification SHOULD conform to the following standards on processing of human-readable Unicode text strings, see:

- Unicode Security FAQ [UNISECFAQ] – common Unicode security issues

[Editor’s note: the rest is TBD but will include explosions, fires, and other physical risks that have been documented in the news and various documents and studies]

10. References

[RS274D] "Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines", EIA Standard RS-274-D, February 1979
https://github.com/makerbot/s3g/blob/master/doc/s3gProtocol.md

11. Author's Address

Primary author:

Michael Sweet
Apple Inc.
1 Infinite Loop
MS 111-HOMC
Cupertino, CA 95014
msweet@apple.com

The authors would also like to thank the following individuals for their contributions to this standard:

Olliver Schinagl, Ultimaker B.V.
12. Change History

12.1 April 13, 2014

1. Updated front matter to incorporate new IEEE-ISTO boilerplate for a contributed white paper.

12.2 April 5, 2015

1. Updated front matter to remove IEEE-ISTO boilerplate.
2. Fixed various typos
3. Clarified that SLC files are commonly known as STL files.
4. Clarified that S3G is a binary version of G-code with a standard packet format.
5. Added use case for printing with loaded materials
6. Added use case for multi-material printing on a single material printer.
7. Added use case for monitoring print progress visually with a web cam.
8. Added exception for "skipping" (insufficient material flow/feed)
9. Added exception for adhesion issues
10. Added exception for build plate being full
11. Added exception for head movement issues.
12. Added figure showing the typical coordinate system.
13. Expanded Job Template and Printer Description details, added comments for discussion.
14. Added new Unicode considerations and references.

12.3 January 23, 2015

Initial revision.