IPP 3D Printing Extensions 0.1
(3D)

Status: Initial

Abstract: This white paper defines an extension to the Internet Printing Protocol that supports printing of physical objects by Additive Manufacturing devices such as 3D printers.

This document is available electronically at:

Copyright © 2015 Apple Inc. All rights reserved.

This document may be copied and furnished to others, and derivative works that comment on, or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice, this paragraph and the title of the Document as referenced below are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the IEEE-ISTO and the Printer Working Group, a program of the IEEE-ISTO.

Title: *IPP 3D Printing Extensions (3D)*

The IEEE-ISTO and the Printer Working Group DISCLAIM ANY AND ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED INCLUDING (WITHOUT LIMITATION) ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

The Printer Working Group, a program of the IEEE-ISTO, reserves the right to make changes to the document without further notice. The document may be updated, replaced or made obsolete by other documents at any time.

The IEEE-ISTO takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights.

The IEEE-ISTO invites any interested party to bring to its attention any copyrights, patents, or patent applications, or other proprietary rights which may cover technology that may be required to implement the contents of this document. The IEEE-ISTO and its programs shall not be responsible for identifying patents for which a license may be required by a document and/or IEEE-ISTO Industry Group Standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention. Inquiries may be submitted to the IEEE-ISTO by e-mail at: ieee-isto@ieee.org.

The Printer Working Group acknowledges that the IEEE-ISTO (acting itself or through its designees) is, and shall at all times, be the sole entity that may authorize the use of certification marks, trademarks, or other special designations to indicate compliance with these materials.

Use of this document is wholly voluntary. The existence of this document does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to its scope.
About the IEEE-ISTO

The IEEE-ISTO is a not-for-profit corporation offering industry groups an innovative and flexible operational forum and support services. The IEEE-ISTO provides a forum not only to develop standards, but also to facilitate activities that support the implementation and acceptance of standards in the marketplace. The organization is affiliated with the IEEE (http://www.ieee.org/) and the IEEE Standards Association (http://standards.ieee.org/).

For additional information regarding the IEEE-ISTO and its industry programs visit:

http://www.ieee-isto.org

About the IEEE-ISTO PWG

The Printer Working Group (or PWG) is a Program of the IEEE Industry Standards and Technology Organization (ISTO) with member organizations including printer manufacturers, print server developers, operating system providers, network operating systems providers, network connectivity vendors, and print management application developers. The group is chartered to make printers and the applications and operating systems supporting them work together better. All references to the PWG in this document implicitly mean “The Printer Working Group, a Program of the IEEE ISTO.” In order to meet this objective, the PWG will document the results of their work as open standards that define print related protocols, interfaces, procedures and conventions. Printer manufacturers and vendors of printer related software will benefit from the interoperability provided by voluntary conformance to these standards.

In general, a PWG standard is a specification that is stable, well understood, and is technically competent, has multiple, independent and interoperable implementations with substantial operational experience, and enjoys significant public support.

For additional information regarding the Printer Working Group visit:

http://www.pwg.org

Contact information:

The Printer Working Group

c/o The IEEE Industry Standards and Technology Organization

445 Hoes Lane

Piscataway, NJ 08854

USA
About the Internet Printing Protocol Workgroup

The Internet Printing Protocol (IPP) working group has developed a modern, full-featured network printing protocol, which is now the industry standard. IPP allows a print client to query a printer for its supported capabilities, features, and parameters to allow the selection of an appropriate printer for each print job. IPP also provides job information prior to, during, and at the end of job processing.

For additional information regarding IPP visit:

http://www.pwg.org/ipp/

Implementers of this specification are encouraged to join the IPP mailing list in order to participate in any discussions of the specification. Suggested additions, changes, or clarification to this specification, should be sent to the IPP mailing list for consideration.
Table of Contents

1. Introduction ... 8
2. Terminology ... 8
 2.1 Terms Used in This Document ... 8
 2.2 Acronyms and Organizations .. 9
3. Rationale for IPP 3D Printing Extensions 10
 3.1 Use Cases ... 10
 3.1.1 Print a 3D Object .. 10
 3.2 Exceptions .. 10
 3.2.1 Clogged Extruder ... 10
 3.2.2 Extruder Temperature Out of Range 10
 3.2.3 Filament Feed Jam ... 11
 3.2.4 Material Empty ... 11
 3.2.5 Print Bed Temperature Out of Range 11
 3.3 Out of Scope .. 11
 3.4 Design Requirements ... 11
4. Technical Solutions/Approaches ... 12
 4.1 High-Level Model .. 12
 4.1.1 Build Platforms .. 13
 4.1.2 Cameras ... 13
 4.1.3 Cutters ... 13
 4.1.4 Fans .. 13
 4.1.5 Lamps ... 13
 4.1.6 Lasers .. 13
 4.1.7 Markers (or Extruders) .. 13
 4.1.8 Motors .. 13
 4.1.9 Reservoirs ... 13
 4.2 Coordinate System ... 13
5. New Attributes ... 14
 5.1 Job Template Attributes .. 14
 5.1.1 materials-col (1setOf collection) 14
 5.1.2 print-fill-density (integer(0:100)) 15
 5.1.3 print-fill-thickness (integer(0:MAX)) 15
 5.1.4 print-layer-thickness (integer(0:MAX)) 15
 5.1.5 print-rafts (type2 keyword) .. 15
 5.1.6 print-shell-thickness (integer(0:MAX)) 16
 5.1.7 print-supports (type2 keyword) 16
 5.1.8 printer-bed-temperature (integer | no-value) 16
 5.1.9 printer-fan-speed (integer(0:100)) 16
 5.2 Printer Description Attributes .. 16
 5.2.1 materials-col-database (1setOf collection) 16
 5.2.2 materials-col-default (1setOf collection) 16
 5.2.3 materials-col-ready (1setOf collection) 16
 5.2.4 materials-col-supported (1setOf type2 keyword) 17
 5.2.5 material-diameter-supported (1setOf (integer | rangeOfInteger)) 17
 5.2.6 material-feed-rate-supported (1setOf (integer | rangeOfInteger)) 17
5.2.7 material-type-supported (1setOf type2 keyword) .. 17
5.2.8 print-fill-density-default (integer(0:100)) .. 17
5.2.9 print-fill-thickness-default (integer(0:MAX)) ... 17
5.2.10 print-fill-thickness-supported (1setOf (integer(0:MAX) |

rangeOfInteger(0:MAX))) .. 17
5.2.11 print-layer-order (type1 keyword) ... 17
5.2.12 print-layer-thickness-default (integer(0:MAX)) ... 17
5.2.13 print-layer-thickness-supported (1setOf (integer(0:MAX) |

rangeOfInteger(0:MAX))) .. 17
5.2.14 print-rafts-default (type2 keyword) ... 18
5.2.15 print-rafts-supported (1setOf type2 keyword) ... 18
5.2.16 print-shell-thickness-default (integer(0:MAX)) ... 18
5.2.17 print-shell-thickness-supported (1setOf (integer(0:MAX) |

rangeOfInteger(0:MAX))) .. 18
5.2.18 print-supports-default (type2 keyword) ... 18
5.2.19 print-supports-supported (1setOf type2 keyword) 18
5.2.20 printer-bed-temperature-default (integer | no-value) 18
5.2.21 printer-bed-temperature-supported (1setOf (integer | rangeOfInteger)) 18
5.2.22 printer-fan-speed-default (integer(MAX)) .. 18
5.2.23 printer-fan-speed-supported (boolean) .. 19
5.2.24 printer-head-temperature-supported (1setOf integer | rangeOfInteger) 19
5.2.25 filament-retraction-distance-supported (1setOf (integer(0:MAX) |

rangeOfInteger(0:MAX))) .. 19
5.2.26 filament-speed-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX))) 19
5.2.27 print-speed-supported (1setOf integer(1:MAX) | rangeOfInteger(1:MAX)) ... 19
5.2.28 printer-accuracy-supported (collection) ... 19
5.2.29 printer-volume-supported (collection) ... 19

5.3 Printer Status Attributes ... 19
5.3.1 printer-bed-temperature-current (integer | no-value) 19
5.3.2 printer-fan-speed-current (integer(0:100)) .. 20
5.3.3 printer-head-temperature-current (1setOf (integer | no-value)) 20

5.4 Other Potential Attributes ... 20
6. New Values for Existing Attributes ... 21
6.1 ipp-features-supported (1setOf type2 keyword) ... 21
6.2 printer-state-reasons (1setOf type2 keyword) .. 21

7. Object Definition Languages (ODLs) .. 23
7.1 Additive Manufacturing Format (AMF) ... 23
7.2 Standard Tessellation Language (STL) .. 23
7.3 G-Code .. 23
7.4 S3G Protocol and X3G File Format ... 23

8. Internationalization Considerations ... 24

9. Security Considerations .. 24

10. References ... 25

11. Author’s Address .. 26
12. Change History ... 27
12.1 January 23, 2015 .. 27
List of Figures

No table of figures entries found.

In your document, select the words to include in the table of contents, and then on the Home tab, under Styles, click a heading style. Repeat for each heading that you want to include, and then insert the table of contents in your document. To manually create a table of contents, on the Document Elements tab, under Table of Contents, point to a style and then click the down arrow button. Click one of the styles under Manual Table of Contents, and then type the entries manually.

List of Tables

Table 1 - 3D Printer Subunits .. 12
1. Introduction

This white paper defines an extension to the Internet Printing Protocol (IPP) that supports printing of physical objects by Additive Manufacturing devices such as three-dimensional (3D) printers. The attributes and values defined in this document have been prototyped using the CUPS software [CUPS].

The primary focus of this document is on popular Fused Deposition Modeling (FDM) devices that melt and extrude ABS and PLA filaments in layers to produce a physical, 3D object. However, the same attributes can be used for other types of 3D printers that use different methods and materials such as Laser Sintering of powdered materials and curing of liquids using ultraviolet light.

This document also does not address the larger issue of choosing a common Object Definition Language (ODL) for interoperability, however there are suggested MIME media type names listed in section 0 for several formats in common use.

2. Terminology

2.1 Terms Used in This Document

Additive Manufacturing: A 3D printing process where material is progressively added to produce the final output.

Binder Jetting: A 3D printing process that uses a liquid binder that is jetted to fuse layers of powdered materials.

Digital Light Processing: A 3D printing process that uses light with a negative image to selectively cure layers of a liquid material.

Fused Deposition Modeling: A 3D printing process that extrudes a molten material to draw layers.

Laser Sintering: A 3D printing process that uses a laser to melt and fuse layers of powdered materials.

Material Jetting: A 3D printing process that jets the actual build materials in liquid or molten state to produce layers.

Selective Deposition Lamination: A 3D printing process that laminates cut sheets of material.

Stereo Lithography: A 3D printing process that uses a laser to cure and fuse layers of liquid materials.

218 Subtractitive Manufacturing: A 3D printing process where material is progressively removed to produce the final output.

220 **2.2 Acronyms and Organizations**

221 **CNC**: Computer Numerical Control

222 **DLP**: Digital Light Processing

223 **FDM**: Fused Deposition Modeling

224 **IANA**: Internet Assigned Numbers Authority, http://www.iana.org/

227 **PWG**: Printer Working Group, http://www.pwg.org/

228 **SD**: SD Card Association, http://www.sdcard.org/

229 **SDL**: Selective Deposition Lamination

230 **SL**: Stereo Lithography

231 **USB**: Universal Serial Bus, http://www.usb.org/
3. Rationale for IPP 3D Printing Extensions

Existing specifications define the following:

1. IPP/2.0 Second Edition [PWG5100.12] defines version 2.0, 2.1, and 2.2 of the Internet Printing Protocol which defines a standard operating and data model, interface protocol, and extension mechanism to support traditional Printers;
2. IPP Everywhere [PWG5100.14] defines a profile of existing IPP specifications, standard Job Template attributes, and standard document formats;
4. The SLC File Specification [STLFORMAT] defines a file format for describing 3D object with a single material;
5. The Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines [RS274D] defines the "G-code" format that is commonly used by 3D printers; and
6. The S3G protocol [S3G] defines a simple network protocol and file format for controlling 3D printers.

Therefore, this IPP 3D Printing Extensions (3D) document should define IPP attributes, values, and operations needed to support printing of 3D objects, status monitoring of 3D printers and print jobs, and configuration of 3D printer characteristics and capabilities.

3.1 Use Cases

3.1.1 Print a 3D Object

Jane is viewing a 3D object and wishes to print it. After initiating a print action, she selects a 3D printer on the network, specifies material and print settings, and submits the object for printing.

3.2 Exceptions

3.2.1 Clogged Extruder

While printing a 3D object, the extruder becomes clogged. The printer stops printing and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

3.2.2 Extruder Temperature Out of Range

While printing a 3D object, the extruder temperature goes out of range for the material being printed. The printer pauses printing until the temperature stabilizes and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.
3.2.3 Filament Feed Jam

While printing a 3D object, the filament jams and cannot be fed into the extruder. The printer stops printing and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

3.2.4 Material Empty

While printing a 3D object, the printer runs out of the printing material. The printer pauses printing until more material is loaded and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

3.2.5 Print Bed Temperature Out of Range

While printing a 3D object, the print bed temperature goes out of the requested range. The printer pauses printing until the temperature stabilizes and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

3.3 Out of Scope

The following are considered out of scope for this document:

1. Definition of new file formats; and
2. Support for Subtractive Manufacturing technologies such as CNC milling machines.

3.4 Design Requirements

The design requirements for this document are:

1. Define attributes and values to describe supported and loaded (ready) materials used for FDM; and
2. Define attributes and values to describe FDM printer capabilities and state

The design recommendations for this document are:

1. Support 3D printing technologies other than FDM
4. Technical Solutions/Approaches

Current 3D printers offer limited connectivity and status monitoring capabilities. Many printers simply print G-code files from SD memory cards, with all interaction and status monitoring happening at the printer's console.

Makerbot Industries uses a proprietary protocol [S3G] and file format that generalizes some aspects of the interface between a host device and 3D printer, and this interface does offer an improved printing experience from the host device. However, this solution is highly specific to FDM printing and does not offer any spooling or security functionality.

Various other proprietary protocols and interfaces are also in use, typically based on the USB serial protocol class for direct connection to a host device. And there are a number of Cloud-based solutions emerging that utilize a proxy device that communicates with the Cloud and 3D printer.

Given that the 3D printing industry and technologies are still undergoing a great deal of change and development, certain aspects of 3D printing may be difficult or infeasible to standarized. However, a stable, reliable, and secure interface between host device (IPP Client) and 3D printer (IPP Printer) can be defined today in a way that allows for future changes to be incorporated without difficulty.

4.1 High-Level Model

IPP [RFC2911] and the IETF Printer MIB [RFC3805] already define a comprehensive model for the operation and data elements of a typical 2D printer. The IPP Job processing model matches how 3D printers process Jobs and Documents. However, more types of subunits are used in a 3D printer, requiring additions to the model and state values. Table 1 lists the subunits of 3D printers for different technologies.

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build Platforms</td>
<td>All</td>
</tr>
<tr>
<td>Cameras</td>
<td>All</td>
</tr>
<tr>
<td>Cutters</td>
<td>SDL</td>
</tr>
<tr>
<td>Doors</td>
<td>All</td>
</tr>
<tr>
<td>Fans</td>
<td>FDM</td>
</tr>
<tr>
<td>Input Trays</td>
<td>SDL</td>
</tr>
<tr>
<td>Lamps</td>
<td>DLP</td>
</tr>
<tr>
<td>Lasers</td>
<td>Laser Sintering, SL</td>
</tr>
<tr>
<td>Marker Supplies</td>
<td>All</td>
</tr>
<tr>
<td>Markers (or Extruders)</td>
<td>Many</td>
</tr>
<tr>
<td>Media Path</td>
<td>SDL</td>
</tr>
<tr>
<td>Motors</td>
<td>All</td>
</tr>
<tr>
<td>Reservoirs</td>
<td>DLP, Laser Sintering, SL</td>
</tr>
</tbody>
</table>
4.1.1 Build Platforms

Build Platforms hold the printed object. The platform moves up or down during printing as layers are applied.

4.1.2 Cameras

Cameras typically show the Build Platforms, offering a visual progress/status reporting for remote users.

4.1.3 Cutters

Cutters are used to trim support material on printed objects and/or remove regions of media that are not part of the final printed object.

4.1.4 Fans

Fans are used to cool printed material and maintain proper extruder temperature.

4.1.5 Lamps

Lamps are used by DLP printers to provide an ultraviolet light source for curing the liquid material while printing a layer.

4.1.6 Lasers

Lasers are used by Laser Sintering and Stereo Lithography (SL) printers to fuse powdered material or cure liquid material while printing a layer.

4.1.7 Markers (or Extruders)

Markers can be traditional subunits where an image is printed on sheets of paper (SDL), extruders that place material onto the Build Platform or previous layer, or projectors that display an inverse image on the surface of a liquid material (DLP).

4.1.8 Motors

Motors are used to move the Build Platforms and (in some cases) move the Markers.

4.1.9 Reservoirs

Reservoirs hold liquid or powdered material used to create the printed object.

4.2 Coordinate System

3D printers operate in three dimensions and thus have three axes of movement. The X axis represents the width of the object, the Y axis represents the depth of the object, and the Z axis represents the height of the object. [Editor's note: probably want a figure for this]
5. New Attributes

5.1 Job Template Attributes

5.1.1 materials-col (1setOf collection)

This Job Template attribute defines the materials to be used for the Job.

5.1.1.1 material-color (type2 keyword)

This member attribute provides a PWG media color value representing the color of the material.

5.1.1.2 material-diameter (integer)

This member attribute provides the diameter of the printed material in nanometers. This attribute is only applicable for Printers that extrude their material.

5.1.1.3 material-feed-rate (integer)

This member attribute provides the material feed rate in nanometers per second. This attribute is only applicable for Printers that extrude their material.

5.1.1.4 material-key (keyword)

This member attribute provides an unlocalized name of the material that can be localized using the strings file referenced by the "printer-strings-uri" Printer attribute.

5.1.1.5 material-name (name(MAX))

This member attribute provides a localized name of the material.

5.1.1.6 material-type (type2 keyword)

This member attribute specifies the type of material. Values include:

- 'abs_filament': Acrylonitrile Butadiene Styrene (ABS) filament.
- 'chocolate_powder': Chocolate powder.
- 'gold_powder': Gold (metal) powder.
- 'photopolymer-resin_liquid': Photopolymer (liquid) resin.
- 'pla_filament': Polylactic Acid (PLA) filament.
- 'pla-flexible_filament': Flexible PLA filament.
'silver_powder': Silver (metal) powder.

5.1.1.7 filament-retraction-distance (integer(0:MAX))
This member attribute specifies the filament retraction distance in nanometers. This attribute is only applicable to FDM Printers.

5.1.1.8 filament-retraction-speed (integer(0:MAX))
This member attribute specifies the filament retraction speed in nanometers per second. This attribute is only applicable to FDM Printers.

5.1.1.9 extruder-temperature (integer | rangeOfInteger)
This member attribute specifies the desired extruder temperature (or range of temperatures) in degrees Celsius. This attribute is only applicable to Printers that extrude their material.

5.1.1.10 print-speed (integer(1:MAX))
This member attribute specifies the print speed in nanometers per second.

5.1.2 print-fill-density (integer(0:100))
This Job Template attribute specifies the fill density of interior regions in percent.

5.1.3 print-fill-thickness (integer(0:MAX))
This Job Template attribute specifies the thickness of any fill walls in nanometers, with 0 representing the thinnest possible walls.

5.1.4 print-layer-thickness (integer(0:MAX))
This Job Template attribute specifies the thickness of each layer in nanometers, with 0 representing the thinnest possible layers.

5.1.5 print-rafts (type2 keyword)
This Job Template attribute specifies whether to print rafts under the object. Values include:

'none': Do not print rafts.

'standard': Print rafts using implementation-defined default parameters.

'material-N': Print rafts using the Nth material, where N is an integer from 1 to the number of materials for the Job.
5.1.6 print-shell-thickness (integer(0:MAX))

This Job Template attribute specifies the thickness of exterior walls in nanometers, with 0 representing the thinnest possible wall.

5.1.7 print-supports (type2 keyword)

This Job Template attribute specifies whether to print supports under the object. Values include:

- 'none': Do not print supports.
- 'standard': Print supports using implementation-defined default parameters.
- 'material-N': Print supports using the Nth material, where N is an integer from 1 to the number of materials for the Job.

5.1.8 printer-bed-temperature (integer | no-value)

This Job Template attribute specifies the desired Build Platform temperature in degrees Celsius. The 'no-value' value is used to disable temperature control on the Build Platform.

5.1.9 printer-fan-speed (integer(0:100))

This Job Template attribute specifies the desired fan speed in percent of maximum. A value of 0 turns the fans off during printing.

5.2 Printer Description Attributes

5.2.1 materials-col-database (1setOf collection)

This Printer Description attribute lists the pre-configured materials for the Printer. Each value contains the corresponding "materials-col" member attributes and will typically reflect vendor and site ("third party") materials that are supported by the Printer.

5.2.2 materials-col-default (1setOf collection)

This Printer Description attribute lists the default materials that will be used if the "materials-col" Job Template attribute is not specified.

5.2.3 materials-col-ready (1setOf collection)

This Printer Description attribute lists the materials that have been loaded into the Printer. Each value contains the corresponding "materials-col" member attributes.
5.2.4 materials-col-supported (1setOf type2 keyword)
This Printer Description attribute lists the "materials-col" member attributes that are supported by the Printer.

5.2.5 material-diameter-supported (1setOf (integer | rangeOfInteger))
This Printer Description attribute lists the supported diameters (or ranges of diameters) of extruded material in nanometers.

5.2.6 material-feed-rate-supported (1setOf (integer | rangeOfInteger))
This Printer Description attribute lists the supported feed rates (or ranges of feed rates) in nanometers per second.

5.2.7 material-type-supported (1setOf type2 keyword)
This Printer Description attribute lists the supported material types for the Printer.

5.2.8 print-fill-density-default (integer(0:100))
This Printer Description attribute specifies the default "print-fill-density" value in percent.

5.2.9 print-fill-thickness-default (integer(0:MAX))
This Printer Description attribute specifies the default "print-fill-thickness" value in nanometers.

5.2.10 print-fill-thickness-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))
This Printer Description attribute lists the supported "print-fill-thickness" values (or ranges of values) in nanometers.

5.2.11 print-layer-order (type1 keyword)
This Printer Description attribute specifies the order of layers when printing, either 'top-to-bottom' or 'bottom-to-top'.

5.2.12 print-layer-thickness-default (integer(0:MAX))
This Printer Description attribute specifies the default "print-layer-thickness" value in nanometers.
5.2.13 print-layer-thickness-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))

This Printer Description attribute lists the supported values (or ranges of values) for the "print-layer-thickness" Job Template attribute.

5.2.14 print-rafs-default (type2 keyword)

This Printer Description attribute specifies the default "print-rafs" value.

5.2.15 print-rafs-supported (1setOf type2 keyword)

This Printer Description attribute lists the supported "print-rafs" values.

5.2.16 print-shell-thickness-default (integer(0:MAX))

This Printer Description attribute specifies the default "print-shell-thickness" value in nanometers.

5.2.17 print-shell-thickness-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))

This Printer Description attribute lists the supported "print-shell-thickness" values (or ranges of values) in nanometers.

5.2.18 print-supports-default (type2 keyword)

This Printer Description attribute specifies the default "print-supports" value.

5.2.19 print-supports-supported (1setOf type2 keyword)

This Printer Description attribute lists the supported "print-supports" values.

5.2.20 printer-bed-temperature-default (integer | no-value)

This Printer Description attribute specifies the default "printer-bed-temperature" value in degrees Celsius.

5.2.21 printer-bed-temperature-supported (1setOf (integer | rangeOfInteger))

This Printer Description attribute lists the supported "printer-bed-temperature" values (or ranges of values) in degrees Celsius.

5.2.22 printer-fan-speed-default (integer(0:MAX))

This Printer Description attribute specifies the default "printer-fan-speed" value in percent.
5.2.23 printer-fan-speed-supported (boolean)
This Printer Description attribute specifies whether the "printer-fan-speed" Job Template attribute is supported.

5.2.24 printer-head-temperature-supported (1setOf integer | rangeOfInteger)
This Printer Description attribute specifies the supported "printer-head-temperature" values (or ranges of values) in degrees Celsius.

5.2.25 filament-retraction-distance-supported (1setOf (integer(0:MAX) | rangeOfInteger(0:MAX)))
This Printer Description attribute specifies the supported "filament-retraction-distance" values (or ranges of values) in nanometers.

5.2.26 filament-speed-supported (1setof (integer(0:MAX) | rangeOfInteger(0:MAX)))
This Printer Description attribute specifies the supported "filament-speed" values (or ranges of values) in nanometers per second.

5.2.27 print-speed-supported (1setOf integer(1:MAX) | rangeOfInteger(1:MAX))
This Printer Description attribute lists the supported "print-speed" values (or ranges of values) in nanometers per second.

5.2.28 printer-accuracy-supported (collection)
This Printer Description attribute specifies the absolute accuracy of the Printer. The "x-accuracy (integer(1:MAX))", "y-accuracy (integer(1:MAX))", and "z-accuracy (integer(1:MAX))" member attributes specify the accuracy in nanometers along each axis.

5.2.29 printer-volume-supported (collection)
This Printer Description attribute specifies the maximum build volume supported by the Printer. The "x-dimension (integer(1:MAX))", "y-dimension (integer(1:MAX))", and "z-dimension (integer(1:MAX))" member attributes specify the size in millimeters along each axis.

5.3 Printer Status Attributes

5.3.1 printer-bed-temperature-current (integer | no-value)
This Printer Status attribute provides the current Build Platform temperature in degrees Celsius. If the Build Platform is not temperature controlled, the 'no-value' value is returned.
5.3.2 printer-fan-speed-current (integer(0:100))

This Printer Status attribute provides the current fan speed in percent.

5.3.3 printer-head-temperature-current (1setOf (integer | no-value))

This Printer Status attribute provides the current extruder head temperatures in degrees Celsius. The 'no-value' value is returned when the extruder head is not temperature controlled.

5.4 Other Potential Attributes

Based on existing 3D printer software, the following parameters could also be candidates for standardization:

1. Initial layer thickness in nanometers
2. Initial layer line width in percent
3. Dual extrusion overlap in nanometers
4. Travel speed in nanometers per second
5. Bottom layer speed in nanometers per second
6. Infill speed in nanometers per second
7. Outer shell speed in nanometers per second
8. Inner shell speed in nanometers per second
9. Minimum layer time in seconds or milliseconds
6. New Values for Existing Attributes

6.1 ipp-features-supported (1setOf type2 keyword)

This document defines the new value 'ipp-3d'. [Editor's note: do we want to include a version number here, e.g., 'ipp-3d-0.1'?]

6.2 printer-state-reasons (1setOf type2 keyword)

This document defines the following new values:

'camera-failure': A camera is no longer working.
'cutter-at-eol': A cutter has reached its end-of-life and will need to be replaced soon.
'cutter-failure': A cutter has failed.
'cutter-near-eol': A cutter is near its end-of-life and may need to be replaced soon.
'extruder-failure': An extruder has failed and requires maintenance or replacement.
'extruder-jam': An extruder is jammed or clogged.
'fan-failure': A fan has failed.
'lamp-at-eol': A lamp has reached its end-of-life and will need to be replaced soon.
'lamp-failure': A lamp has failed.
'lamp-near-eol': A lamp is near its end-of-life and may need to be replaced soon.
'laser-at-eol': A laser has reached its end-of-life and will need to be replaced soon.
'laser-failure': A laser has failed.
'laser-near-eol': A laser is near its end-of-life and may need to be replaced soon.
'material-empty': One or more build materials have been exhausted.
'material-low': One or more build materials may need replenishment soon.
'material-needed': One or more build materials need to be loaded for a processing Job.
'motor-failure': A motor has failed.
'reservoir-empty': One or more reservoirs are empty.
'reservoir-low': One or more reservoirs are almost empty.

'reservoir-needed': One or more reservoirs are empty but need to be filled for a processing Job.
7. Object Definition Languages (ODLs)

This section provides information on several commonly used ODLs with either existing (registered) or suggested MIME media types.

7.1 Additive Manufacturing Format (AMF)

AMF [ISO52915] is a relatively new format that was designed as a replacement for the Standard Tessellation Language (STL). Its use has been hampered by the lack of a freely-available specification, but has several advantages over STL including:

1. Shared vertices which eliminates holes and other breaks in the surface geometry of objects,
2. Specification of multiple materials in a single file,
3. Curved surfaces can be specified, and
4. Coordinates use explicit units for proper output dimensions.

The suggested (but not registered) MIME media type is 'application/amf'.

7.2 Standard Tessellation Language (STL)

STL [STLFORMAT] is widely supported by existing client software. The registered MIME media type is 'application/sla'.

7.3 G-Code

The G-code [RS274] format has long been a common low-level format used by 3D printers, with higher level formats being processed on the Client to produce G-code. The suggested (but not registered) MIME media type is 'application/g-code'.

7.4 S3G Protocol and X3G File Format

The S3G protocol [S3G] defines a simple network protocol for communicating with a 3D printer as well as a low-level file format, typically using a "x3g" extension, that provides a serialization of extrusion commands similar to G-code. The suggested (but not registered) MIME media type is 'application/vnd.makerbot-x3g'.
8. Internationalization Considerations

For interoperability and basic support for multiple languages, conforming implementations MUST support:

5. The Universal Character Set (UCS) Transformation Format – 8 bit (UTF-8) [STD63] encoding of Unicode [UNICODE] [ISO10646]; and

6. The Unicode Format for Network Interchange [RFC5198] which requires transmission of well-formed UTF-8 strings and recommends transmission of normalized UTF-8 strings in Normalization Form C (NFC) [UAX15].

Unicode NFC is defined as the result of performing Canonical Decomposition (into base characters and combining marks) followed by Canonical Composition (into canonical composed characters wherever Unicode has assigned them).

WARNING – Performing normalization on UTF-8 strings received from IPP Clients and subsequently storing the results (e.g., in IPP Job objects) could cause false negatives in IPP Client searches and failed access (e.g., to IPP Printers with percent-encoded UTF-8 URIs now 'hidden')

9. Security Considerations

In addition to the security considerations described in the IPP/1.1: Model and Semantics [RFC2911], the following sub-sections describe issues that are unique to 3D printing.

[Editor's note: the rest is TBD but will include explosions, fires, and other physical risks that have been documented in the news and various documents and studies]
10. References

[RS274D] "Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines", EIA Standard RS-274-D, February 1979

11. Author's Address

Primary author:

Michael Sweet
Apple Inc.
1 Infinite Loop
MS 111-HOMC
Cupertino, CA 95014
msweet@apple.com

The authors would also like to thank the following individuals for their contributions to this standard:

TBD
12. Change History

12.1 January 23, 2015

Initial revision.