January 23, 2015 White Paper

IPP 3D Printing Extensions 0.1 (3D)

Status: Initial

Abstract: This white paper defines an extension to the Internet Printing Protocol that supports printing of physical objects by Additive Manufacturing devices such as 3D printers.

This document is a White Paper. For a definition of a "White Paper", see: http://ftp.pwg.org/pub/pwg/general/pwg-process30.pdf

This document is available electronically at:

http://ftp.pwg.org/pub/pwg/ipp/ws/wd-sweet-ipp3d-20150123.docx http://ftp.pwg.org/pub/pwg/ipp/ws/wd-sweet-ipp3d-20150123.pdf 1 Copyright © 2015 Apple Inc. All rights reserved.

This document may be copied and furnished to others, and derivative works that comment on, or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice, this paragraph and the title of the Document as referenced below are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the IEEE-ISTO and the Printer Working Group, a program of the IEEE-ISTO.

9 Title: *IPP 3D Printing Extensions (3D)*

The IEEE-ISTO and the Printer Working Group DISCLAIM ANY AND ALL WARRANTIES,
 WHETHER EXPRESS OR IMPLIED INCLUDING (WITHOUT LIMITATION) ANY IMPLIED

- 12 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- 13 The Printer Working Group, a program of the IEEE-ISTO, reserves the right to make 14 changes to the document without further notice. The document may be updated, replaced 15 or made obsolete by other documents at any time.

16 The IEEE-ISTO takes no position regarding the validity or scope of any intellectual 17 property or other rights that might be claimed to pertain to the implementation or use of the 18 technology described in this document or the extent to which any license under such rights 19 might or might not be available; neither does it represent that it has made any effort to 20 identify any such rights.

The IEEE-ISTO invites any interested party to bring to its attention any copyrights, patents, or patent applications, or other proprietary rights which may cover technology that may be required to implement the contents of this document. The IEEE-ISTO and its programs shall not be responsible for identifying patents for which a license may be required by a document and/or IEEE-ISTO Industry Group Standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention. Inquiries may be submitted to the IEEE-ISTO by e-mail at: ieee-isto@ieee.org.

The Printer Working Group acknowledges that the IEEE-ISTO (acting itself or through its designees) is, and shall at all times, be the sole entity that may authorize the use of certification marks, trademarks, or other special designations to indicate compliance with these materials.

Use of this document is wholly voluntary. The existence of this document does not imply
 that there are no other ways to produce, test, measure, purchase, market, or provide other
 goods and services related to its scope.

36 About the IEEE-ISTO

The IEEE-ISTO is a not-for-profit corporation offering industry groups an innovative and flexible operational forum and support services. The IEEE-ISTO provides a forum not only to develop standards, but also to facilitate activities that support the implementation and acceptance of standards in the marketplace. The organization is affiliated with the IEEE (<u>http://www.ieee.org/</u>) and the IEEE Standards Association (<u>http://standards.ieee.org/</u>).

- 42 For additional information regarding the IEEE-ISTO and its industry programs visit:
- 43 http://www.ieee-isto.org

44 About the IEEE-ISTO PWG

The Printer Working Group (or PWG) is a Program of the IEEE Industry Standards and 45 46 Technology Organization (ISTO) with member organizations including printer 47 manufacturers, print server developers, operating system providers, network operating systems providers, network connectivity vendors, and print management application 48 49 developers. The group is chartered to make printers and the applications and operating 50 systems supporting them work together better. All references to the PWG in this document implicitly mean "The Printer Working Group, a Program of the IEEE ISTO," In 51 52 order to meet this objective, the PWG will document the results of their work as open standards that define print related protocols, interfaces, procedures and conventions. 53 54 Printer manufacturers and vendors of printer related software will benefit from the 55 interoperability provided by voluntary conformance to these standards.

56 In general, a PWG standard is a specification that is stable, well understood, and is 57 technically competent, has multiple, independent and interoperable implementations with 58 substantial operational experience, and enjoys significant public support.

- 59 For additional information regarding the Printer Working Group visit:
- 60 http://www.pwg.org
- 61 Contact information:
- 62 The Printer Working Group
- 63 c/o The IEEE Industry Standards and Technology Organization
- 64 445 Hoes Lane
- 65 Piscataway, NJ 08854
- 66 USA
- 67

68 About the Internet Printing Protocol Workgroup

The Internet Printing Protocol (IPP) working group has developed a modern, full-featured network printing protocol, which is now the industry standard. IPP allows a print client to query a printer for its supported capabilities, features, and parameters to allow the selection of an appropriate printer for each print job. IPP also provides job information prior to, during, and at the end of job processing.

- 74 For additional information regarding IPP visit:
- 75 http://www.pwg.org/ipp/

76 Implementers of this specification are encouraged to join the IPP mailing list in order to 77 participate in any discussions of the specification. Suggested additions, changes, or

78 clarification to this specification, should be sent to the IPP mailing list for consideration.

80	0 Table of Contents				
81	1. Introduction	8			
82	2. Terminology				
83	2.1 Terms Used in This Document	8			
84	2.2 Acronyms and Organizations	9			
85	3. Rationale for IPP 3D Printing Extensions	10			
86	3.1 Use Cases	10			
87	3.1.1 Print a 3D Object	10			
88	3.2 Exceptions	10			
89	3.2.1 Clogged Extruder				
90	3.2.2 Extruder Temperature Out of Range				
91	3.2.3 Filament Feed Jam				
92	3.2.4 Material Empty				
93	3.2.5 Print Bed Temperature Out of Range				
94	3.3 Out of Scope	11			
95	3.4 Design Requirements				
96	4. Technical Solutions/Approaches				
97	4.1 High-Level Model				
98	4.1.1 Build Platforms				
99	4.1.2 Cameras				
100	4.1.3 Cutters				
101	4.1.4 Fans				
102	4.1.5 Lamps				
103	4.1.6 Lasers				
104	4.1.7 Markers (or Extruders)				
105	4.1.8 Motors				
106	4.1.9 Reservoirs				
107	4.2 Coordinate System				
108	5. New Attributes				
109	5.1 Job Template Attributes				
110	5.1.1 materials-col (1setOf collection)				
111	5.1.2 print-fill-density (integer(0:100))	15			
112	5.1.3 print-fill-thickness (integer(0:MAX))				
113	5.1.4 print-layer-thickness (integer(0:MAX))				
114	5.1.5 print-rafts (type2 keyword)	15			
115	5.1.6 print-shell-thickness (integer(0:MAX))				
116	5.1.7 print-supports (type2 keyword)				
117	5.1.8 printer-bed-temperature (integer no-value)	16			
118	5.1.9 printer-fan-speed (integer(0:100))				
119	5.2 Printer Description Attributes				
120	5.2.1 materials-col-database (1setOf collection)				
121	5.2.2 materials-col-default (1setOf collection)				
122	5.2.3 materials-col-ready (1setOf collection)				
123	5.2.4 materials-col-supported (1setOf type2 keyword)				
124	5.2.5 material-diameter-supported (1setOf (integer rangeOfInteger))				
125	5.2.6 material-feed-rate-supported (1setOf (integer rangeOfInteger))	17			

126	5.2.7 material-type-supported (1setOf type2 keyword)	17
127	5.2.8 print-fill-density-default (integer(0:100))	
128	5.2.9 print-fill-thickness-default (integer(0:MAX))	17
129	5.2.10 print-fill-thickness-supported (1setOf (integer(0:MAX)	
130	rangeOfInteger(0:MAX)))	17
131	rangeOfInteger(0:MAX))) 5.2.11 print-layer-order (type1 keyword)	17
132	5.2.12 print-layer-thickness-default (integer(0:MAX))	17
133	5.2.13 print-layer-thickness-supported (1setOf (integer(0:MAX)	
134	rangeOfInteger(0:MAX)))	18
135	5.2.14 print-rafts-default (type2 keyword)	
136	5.2.15 print-rafts-supported (1setOf type2 keyword)	
137	5.2.16 print-shell-thickness-default (integer(0:MAX))	
138	5.2.17 print-shell-thickness-supported (1setOf (integer(0:MAX))	10
139	5.2.17 print-shell-thickness-supported (TSetOT (integer(0.intAA))	10
140	rangeOfInteger(0:MAX))) 5.2.18 print-supports-default (type2 keyword)	10 10
141	5.2.19 print-supports-supported (1setOf type2 keyword)	
142	5.2.20 printer-bed-temperature-default (integer no-value)	
143	5.2.21 printer-bed-temperature-supported (1setOf (integer rangeOfInteger))	
144	5.2.22 printer-fan-speed-default (integer(0:MAX))	
145	5.2.23 printer-fan-speed-supported (boolean)	
146	5.2.24 printer-head-temperature-supported (1setOf integer rangeOfInteger)	19
147	5.2.25 filament-retraction-distance-supported (1setOf (integer(0:MAX)	
148		19
149	5.2.26 filament-speed-supported (1setof (integer(0:MAX) rangeOfInteger(0:MAX)	()))19
150	5.2.27 print-speed-supported (1setOf integer(1:MAX) rangeOfInteger(1:MAX))	19
151	5.2.28 printer-accuracy-supported (collection)	19
152	5.2.29 printer-volume-supported (collection)	19
153	5.3 Printer Status Attributes	19
154	5.3.1 printer-bed-temperature-current (integer no-value)	19
155	5.3.2 printer-fan-speed-current (integer(0:100))	20
156	5.3.3 printer-head-temperature-current (1setOf (integer no-value))	20
157	5.4 Other Potential Attributes	
158	6. New Values for Existing Attributes	
159	6.1 ipp-features-supported (1setOf type2 keyword)	
160	6.2 printer-state-reasons (1setOf type2 keyword)	
161	7. Object Definition Languages (ODLs)	
162	7.1 Additive Manufacturing Format (AMF)	
163	7.2 Standard Tessellation Language (STL)	
164	7.3 G-Code	
165	7.4 S3G Protocol and X3G File Format	
166	8. Internationalization Considerations	
167	9. Security Considerations	
168	10. References	
169	11. Author's Address	
170	12. Change History	
171	12.1 January 23, 2015	21

172 173 174	List of Figures
175 176 177 178 179 180 181 182	No table of of figures entries found. In your document, select the words to include in the table of contents, and then on the Home tab, under Styles, click a heading style. Repeat for each heading that you want to include, and then insert the table of contents in your document. To manually create a table of contents, on the Document Elements tab, under Table of Contents, point to a style and then click the down arrow button. Click one of the styles under Manual Table of Contents, and then type the entries manually.
183 184 185 186	List of Tables Table 1 - 3D Printer Subunits 12

187 **1. Introduction**

This white paper defines an extension to the Internet Printing Protocol (IPP) that supports printing of physical objects by Additive Manufacturing devices such as three-dimensional (3D) printers. The attributes and values defined in this document have been prototyped using the CUPS software [CUPS].

The primary focus of this document is on popular Fused Deposition Modeling (FDM) devices that melt and extrude ABS and PLA filaments in layers to produce a physical, 3D object. However, the same attributes can be used for other types of 3D printers that use different methods and materials such as Laser Sintering of powdered materials and curing of liquids using ultraviolet light.

197 This document also does not address the larger issue of choosing a common Object 198 Definition Language (ODL) for interoperability, however there are suggested MIME media 199 type names listed in section 0 for several formats in common use.

200 **2. Terminology**

201 **2.1 Terms Used in This Document**

- 202 *Additive Manufacturing*: A 3D printing process where material is progressively added to 203 produce the final output.
- *Binder Jetting*: A 3D printing process that uses a liquid binder that is jetted to fuse layers of powdered materials.
- 206 *Digital Light Processing*: A 3D printing process that uses light with a negative image to 207 selectively cure layers of a liquid material.
- *Fused Deposition Modeling*: A 3D printing process that extrudes a molten material to draw layers.
- Laser Sintering: A 3D printing process that uses a laser to melt and fuse layers of powdered materials.
- 212 *Material Jetting*: A 3D printing process that jets the actual build materials in liquid or molten 213 state to produce layers.
- 214 *Selective Deposition Lamination*: A 3D printing process that laminates cut sheets of 215 material.
- 216 *Stereo Lithography*: A 3D printing process that uses a laser to cure and fuse layers of 217 liquid materials.

218 *Subtractitive Manufacturing*: A 3D printing process where material is progressively 219 removed to produce the final output.

220 **2.2 Acronyms and Organizations**

- 221 *CNC*: Computer Numerical Control
- 222 *DLP*: Digital Light Processing
- 223 *FDM*: Fused Deposition Modeling
- 224 IANA: Internet Assigned Numbers Authority, http://www.iana.org/
- 225 *IETF*: Internet Engineering Task Force, http://www.ietf.org/
- 226 /SO: International Organization for Standardization, http://www.iso.org/
- 227 *PWG*: Printer Working Group, http://www.pwg.org/
- 228 SD: SD Card Association, http://www.sdcard.org/
- 229 SDL: Selective Deposition Lamination
- 230 *SL*: Stereo Lithography
- 231 USB: Universal Serial Bus, http://www.usb.org/

3. Rationale for IPP 3D Printing Extensions

- 234 Existing specifications define the following:
- IPP/2.0 Second Edition [PWG5100.12] defines version 2.0, 2.1, and 2.2 of the Internet Printing Protocol which defines a standard operating and data model, interface protocol, and extension mechanism to support traditional Printers;
- 238
 2. IPP Everywhere [PWG5100.14] defines a profile of existing IPP specifications,
 standard Job Template attributes, and standard document formats;
- The Standard Specification for Additive Manufacturing File Format (AMF)
 Version 1.1 [ISO52915] defines an XML schema and file format for describing
 3D objects with one or more materials;
 - 4. The SLC File Specification [STLFORMAT] defines a file format for describing 3D object with a single material;
- 5. The Interchangeable Variable Block Data Format for Positioning, Contouring,
 and Contouring/Positioning Numerically Controlled Machines [RS274D] defines
 the "G-code" format that is commonly used by 3D printers; and
- 2486. The S3G protocol [S3G] defines a simple network protocol and file format for controlling 3D printers.
- Therefore, this IPP 3D Printing Extensions (3D) document should define IPP attributes, values, and operations needed to support printing of 3D objects, status monitoring of 3D printers and print jobs, and configuration of 3D printer characteristics and capabilities.

253 **3.1 Use Cases**

243

244

254 **3.1.1 Print a 3D Object**

Jane is viewing a 3D object and wishes to print it. After initiating a print action, she selects a 3D printer on the network, specifies material and print settings, and submits the object for printing.

258 **3.2 Exceptions**

259 **3.2.1 Clogged Extruder**

While printing a 3D object, the extruder becomes clogged. The printer stops printing and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

263 **3.2.2 Extruder Temperature Out of Range**

While printing a 3D object, the extruder temperature goes out of range for the material being printed. The printer pauses printing until the temperature stabilizes and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

268 **3.2.3 Filament Feed Jam**

While printing a 3D object, the filament jams and cannot be fed into the extruder. The printer stops printing and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

272 **3.2.4 Material Empty**

While printing a 3D object, the printer runs out of the printing material. The printer pauses printing until more material is loaded and sets the corresponding state reason to allow Jane's Client device to discover the issue and display an appropriate alert.

276 **3.2.5 Print Bed Temperature Out of Range**

277 While printing a 3D object, the print bed temperature goes out of the requested range. The

278 printer pauses printing until the temperature stabilizes and sets the corresponding state

reason to allow Jane's Client device to discover the issue and display an appropriate alert.

280 **3.3 Out of Scope**

- 281 The following are considered out of scope for this document:
- 282 1. Definition of new file formats; and
- 283283284<l

285 **3.4 Design Requirements**

- 286 The design requirements for this document are:
- Define attributes and values to describe supported and loaded (ready) materials
 used for FDM; and
- 289 2. Define attributes and values to describe FDM printer capabilities and state
- 290 The design recommendations for this document are:
- 291 1. Support 3D printing technologies other than FDM

293 **4. Technical Solutions/Approaches**

294 Current 3D printers offer limited connectivity and status monitoring capabilities. Many 295 printers simply print G-code files from SD memory cards, with all interaction and status 296 monitoring happening at the printer's console.

297 Makerbot Industries uses a proprietary protocol [S3G] and file format that generalizes 298 some aspects of the interface between a host device and 3D printer, and this interface 299 does offer an improved printing experience from the host device. However, this solution is 300 highly specific to FDM printing and does not offer any spooling or security functionality.

Various other proprietary protocols and interfaces are also in use, typically based on the USB serial protocol class for direct connection to a host device. And there are a number of Cloud-based solutions emerging that utilize a proxy device that communicates with the Cloud and 3D printer.

Given that the 3D printing industry and technologies are still undergoing a great deal of change and development, certain aspects of 3D printing may be difficult or infeasible to standarized. However, a stable, reliable, and secure interface between host device (IPP Client) and 3D printer (IPP Printer) can be defined today in a way that allows for future changes to be incorporated without difficulty.

310 4.1 High-Level Model

311 IPP [RFC2911] and the IETF Printer MIB [RFC3805] already define a comprehensive 312 model for the operation and data elements of a typical 2D printer. The IPP Job processing 313 model matches how 3D printers process Jobs and Documents. However, more types of 314 subunits are used in a 3D printer, requiring additions to the model and state values. Table 315 1 lists the subunits of 3D printers for different technologies.

316

Table 1 - 3D Printer Subunits

Subunit	Technology
Build Platforms	All
Cameras	All
Cutters	SDL
Doors	All
Fans	FDM
Input Trays	SDL
Lamps	DLP
Lasers	Laser Sintering, SL
Marker Supplies	All
Markers (or Extruders)	Many
Media Path	SDL
Motors	All
Reservoirs	DLP, Laser Sintering, SL

317 4.1.1 Build Platforms

Build Platforms hold the printed object. The platform moves up or down during printing as layers are applied.

320 **4.1.2 Cameras**

321 Cameras typically show the Build Platforms, offering a visual progress/status reporting for 322 remote users.

323 4.1.3 Cutters

324 Cutters are used to trim support material on printed objects and/or remove regions of 325 media that are not part of the final printed object.

326 4.1.4 Fans

327 Fans are used to cool printed material and maintain proper extruder temperature.

328 4.1.5 Lamps

Lamps are used by DLP printers to provide an ultraviolet light source for curing the liquid material while printing a layer.

331 4.1.6 Lasers

Lasers are used by Laser Sintering and Stereo Lithography (SL) printers to fuse powdered material or cure liquid material while printing a layer.

334 4.1.7 Markers (or Extruders)

Markers can be traditional subunits where an image is printed on sheets of paper (SDL), extruders that place material onto the Build Platform or previous layer, or projectors that display an inverse image on the surface of a liquid material (DLP).

338 4.1.8 Motors

339 Motors are used to move the Build Platforms and (in some cases) move the Markers.

340 **4.1.9 Reservoirs**

341 Reservoirs hold liquid or powdered material used to create the printed object.

342 **4.2 Coordinate System**

343 3D printers operate in three dimensions and thus have three axis of movement. The X axis 344 represents the width of the object, the Y axis represents the depth of the object, and the Z 345 axis represents the height of the object. [Editor's note: probably want a figure for this]

346 **5. New Attributes**

347 **5.1 Job Template Attributes**

348 **5.1.1 materials-col (1setOf collection)**

349 This Job Template attribute defines the materials to be used for the Job.

350 **5.1.1.1 material-color (type2 keyword)**

- This member attribute provides a PWG media color value representing the color of the material.
- 353 **5.1.1.2 material-diameter (integer)**
- This member attribute provides the diameter of the printed material in nanometers. This attribute is only applicable for Printers that extrude their material.

356 **5.1.1.3 material-feed-rate (integer)**

This member attribute provides the material feed rate in nanometers per second. This attribute is only applicable for Printers that extrude their material.

359 **5.1.1.4 material-key (keyword)**

This member attribute provides an unlocalized name of the material that can be localized using the strings file referenced by the "printer-strings-uri" Printer attribute.

362 **5.1.1.5 material-name (name(MAX))**

363 This member attribute provides a localized name of the material.

364 **5.1.1.6 material-type (type2 keyword)**

- 365 This member attribute specifies the type of material. Values include:
- 366 'abs_filament': Acrylonitrile Butadiene Styrene (ABS) filament.
- 367 'chocolate_powder': Chocolate powder.
- 368 'gold_powder': Gold (metal) powder.
- 369 'photopolymer-resin_liquid': Photopolymer (liquid) resin.
- 370 'pla_filament': Polylactic Acid (PLA) filament.
- 371 'pla-flexible_filament': Flexible PLA filament.

372 'silver_powder': Silver (metal) powder.

373 **5.1.1.7 filament-retraction-distance (integer(0:MAX))**

This member attribute specifies the filament retraction distance in nanometers. This attribute is only applicable to FDM Printers.

376 **5.1.1.8 filament-retraction-speed (integer(0:MAX))**

This member attribute specifies the filament retraction speed in nanometers per second.This attribute is only applicable to FDM Printers.

379 **5.1.1.9 extruder-temperature (integer | rangeOfInteger)**

This member attribute specifies the desired extruder temperature (or range of temperatures) in degress Celsius. This attribute is only applicable to Printers that extrude their material.

383 **5.1.1.10 print-speed (integer(1:MAX))**

384 This member attribute specifies the print speed in nanometers per second.

385 **5.1.2 print-fill-density (integer(0:100))**

386 This Job Template attribute specifies the fill density of interior regions in percent.

387 **5.1.3 print-fill-thickness (integer(0:MAX))**

This Job Template attribute specifies the thickness of any fill walls in nanometers, with 0 representing the thinnest possible walls.

390 **5.1.4 print-layer-thickness (integer(0:MAX))**

This Job Template attribute specifies the thickness of each layer in nanometers, with 0 representing the thinnest possible layers.

393 **5.1.5 print-rafts (type2 keyword)**

- This Job Template attribute specifies whether to print rafts under the object. Values include:
- 396 'none': Do not print rafts.
- 397 'standard': Print rafts using implementation-defined default parameters.
- 'material-N': Print rafts using the Nth material, where N is an integer from 1 to thenumber of materials for the Job.

400 **5.1.6 print-shell-thickness (integer(0:MAX))**

This Job Template attribute specifies the thickness of exterior walls in nanometers, with 0 representing the thinnest possible wall.

403 **5.1.7 print-supports (type2 keyword)**

- 404 This Job Template attribute specifies whether to print supports under the object. Values 405 include:
- 406 'none': Do not print supports.
- 407 'standard': Print supports using implementation-defined default parameters.
- 408 'material-N': Print supports using the Nth material, where N is an integer from 1 to409 the number of materials for the Job.

410 **5.1.8 printer-bed-temperature (integer | no-value)**

411 This Job Template attribute specifies the desired Build Platform temperature in degrees 412 Celsius. The 'no-value' value is used to disable temperature control on the Build Platform.

413 **5.1.9 printer-fan-speed (integer(0:100))**

This Job Template attribute specifies the desired fan speed in percent of maximum. A value of 0 turns the fans off during printing.

416 **5.2 Printer Description Attributes**

417 **5.2.1** materials-col-database (1setOf collection)

This Printer Description attribute lists the pre-configured materials for the Printer. Each value contains the corresponding "materials-col" member attributes and will typically reflect vendor and site ("third party") materials that are supported by the Printer.

421 **5.2.2 materials-col-default (1setOf collection)**

422 This Printer Description attribute lists the default materials that will be used if the 423 "materials-col" Job Template attribute is not specified.

424 **5.2.3 materials-col-ready (1setOf collection)**

- 425 This Printer Description attribute lists the materials that have been loaded into the Printer.
- 426 Each value contains the corresponding "materials-col" member attributes.

427 **5.2.4** materials-col-supported (1setOf type2 keyword)

428 This Printer Description attribute lists the "materials-col" member attributes that are 429 supported by the Printer.

430 **5.2.5 material-diameter-supported (1setOf (integer | rangeOfInteger))**

431 This Printer Description attribute lists the supported diameters (or ranges of diameters) of 432 extruded material in nanometers.

433 **5.2.6 material-feed-rate-supported (1setOf (integer | rangeOfInteger))**

This Printer Description attribute lists the supported feed rates (or ranges of feed rates) in nanometers per second.

436 **5.2.7 material-type-supported (1setOf type2 keyword)**

437 This Printer Description attribute lists the supported material types for the Printer.

438 **5.2.8 print-fill-density-default (integer(0:100))**

439 This Printer Description attribute specifies the default "print-fill-density" value in percent.

440 **5.2.9 print-fill-thickness-default (integer(0:MAX))**

441 This Printer Description attribute specifies the default "print-fill-thickness" value in 442 nanometers.

443 **5.2.10** print-fill-thickness-supported (1setOf (integer(0:MAX) |

444 rangeOfInteger(0:MAX)))

This Printer Description attribute lists the supported "print-fill-thickness" values (or ranges of values) in nanometers.

447 **5.2.11 print-layer-order (type1 keyword)**

This Printer Description attribute specifies the order of layers when printing, either 'top-tobottom' or 'bottom-to-top'.

450 **5.2.12 print-layer-thickness-default (integer(0:MAX))**

451 This Printer Description attribute specifies the default "print-layer-thickness" value in 452 nanometers.

453 5.2.13 print-layer-thickness-supported (1setOf (integer(0:MAX) |

454 rangeOfInteger(0:MAX)))

This Printer Description attribute lists the supported values (or ranges of values) for the "print-layer-thickness" Job Template attribute.

457 **5.2.14 print-rafts-default (type2 keyword)**

458 This Printer Description attribute specifies the default "print-rafts" value.

459 **5.2.15 print-rafts-supported (1setOf type2 keyword)**

460 This Printer Description attribute lists the supported "print-rafts" values.

461 **5.2.16 print-shell-thickness-default (integer(0:MAX))**

- 462 This Printer Description attribute specifies the default "print-shell-thickness" value in 463 nanometers.
- 464 5.2.17 print-shell-thickness-supported (1setOf (integer(0:MAX) |
- 465 rangeOfInteger(0:MAX)))
- 466 This Printer Description attribute lists the supported "print-shell-thickness" values (or 467 ranges of values) in nanometers.
- 468 **5.2.18 print-supports-default (type2 keyword)**
- 469 This Printer Description attribute specifies the default "print-supports" value.
- 470 **5.2.19** print-supports-supported (1setOf type2 keyword)
- 471 This Printer Description attribute lists the supported "print-supports" values.

472 **5.2.20** printer-bed-temperature-default (integer | no-value)

- This Printer Description attribute specifies the default "printer-bed-temperature" value in degrees Celsius.
- 475 **5.2.21** printer-bed-temperature-supported (1setOf (integer | rangeOfInteger))
- This Printer Description attribute lists the supported "printer-bed-temperature" values (or ranges of values) in degrees Celsius.

478 **5.2.22** printer-fan-speed-default (integer(0:MAX))

479 This Printer Description attribute specifies the default "printer-fan-speed" value in percent.

480 **5.2.23 printer-fan-speed-supported (boolean)**

481 This Printer Description attribute specifies whether the "printer-fan-speed" Job Template 482 attribute is supported.

483 **5.2.24** printer-head-temperature-supported (1setOf integer | rangeOfInteger)

This Printer Description attribute specifies the supported "printer-head-temperature" values(or ranges of values) in degrees Celsius.

486 5.2.25 filament-retraction-distance-supported (1setOf (integer(0:MAX) | 487 rangeOfInteger(0:MAX)))

488 This Printer Description attribute specifies the supported "filament-retraction-distance" 489 values (or ranges of values) in nanometers.

490 **5.2.26** filament-speed-supported (1setof (integer(0:MAX) | rangeOfInteger(0:MAX)))

491 This Printer Description attribute specifies the supported "filament-speed" values (or 492 ranges of values) in nanometers per second.

493 **5.2.27** print-speed-supported (1setOf integer(1:MAX) | rangeOfInteger(1:MAX))

494 This Printer Description attribute lists the supported "print-speed" values (or ranges of 495 values) in nanometers per second.

496 **5.2.28 printer-accuracy-supported (collection)**

This Printer Description attribute specifies the absolute accuracy of the Printer. The "xaccuracy (integer(1:MAX))", "y-accuracy (integer(1:MAX))", and "z-accuracy (integer(1:MAX))" member attributes specify the accuracy in nanometers along each axis.

500 **5.2.29 printer-volume-supported (collection)**

501 This Printer Description attribute specifies the maximum build volume supported by the 502 Printer. The "x-dimension (integer(1:MAX))", "y-dimension (integer(1:MAX))", and "z-503 dimension (integer(1:MAX))" member attributes specify the size in millimeters along each 504 axis.

505 **5.3 Printer Status Attributes**

506 **5.3.1 printer-bed-temperature-current (integer | no-value)**

507 This Printer Status attribute provides the current Build Platform temperature in degrees 508 Celsius. If the Build Platform is not temperature controlled, the 'no-value' value is returned.

509 **5.3.2 printer-fan-speed-current (integer(0:100))**

510 This Printer Status attribute provides the current fan speed in percent.

511 **5.3.3 printer-head-temperature-current (1setOf (integer | no-value))**

512 This Printer Status attribute provides the current extruder head temperatures in degrees

513 Celsius. The 'no-value' value is returned when the extruder head is not temperature

514 controlled.

515 **5.4 Other Potential Attributes**

516 Based on existing 3D printer software, the following parameters could also be candidates 517 for standardization:

518 1. Initial layer thickness in nanometers 2. Initial layer line width in percent 519 3. Dual extrusion overlap in nanometers 520 4. Travel speed in nanometers per second 521 522 5. Bottom layer speed in nanometers per second 6. Infill speed in nanometers per second 523 7. Outer shell speed in nanometers per second 524 525 8. Inner shell speed in nanometers per second 9. Minimum layer time in seconds or milliseconds 526 527

6. New Values for Existing Attributes

529 6.1 ipp-features-supported (1setOf type2 keyword)

530 This document defines the new value 'ipp-3d'. [Editor's note: do we want to include a 531 version number here, e.g., 'ipp-3d-0.1'?]

532 **6.2 printer-state-reasons (1setOf type2 keyword)**

- 533 This document defines the following new values:
- 534 'camera-failure': A camera is no longer working.
- 535 'cutter-at-eol': A cutter has reached its end-of-life and will need to be replaced soon.
- 536 'cutter-failure': A cutter has failed.
- 537 'cutter-near-eol': A cutter is near its end-of-life and may need to be replaced soon.
- 538 'extruder-failure': An extruder has failed and requires maintenance or replacement.
- 539 'extruder-jam': An extruder is jammed or clogged.
- 540 'fan-failure': A fan has failed.
- 541 'lamp-at-eol': A lamp has reached its end-of-life and will need to be replaced soon.
- 542 'lamp-failure': A lamp has failed.
- 543 'lamp-near-eol': A lamp is near its end-of-life and may need to be replaced soon.
- 544 'laser-at-eol': A laser has reached its end-of-life and will need to be replaced soon.
- 545 'laser-failure': A laser has failed.
- 546 'laser-near-eol': A laser is near its end-of-life and may need to be replaced soon.
- 547 'material-empty': One or more build materials have been exhausted.
- 548 'material-low': One or more build materials may need replenishment soon.
- 549 'material-needed': One or more build materials need to be loaded for a processing550 Job.
- 551 'motor-failure': A motor has failed.
- 552 'reservoir-empty': One or more reservoirs are empty.

553 'reservoir-low': One or more reservoirs are almost empty.

554 'reservoir-needed': One or more reservoirs are empty but need to be filled for a 555 processing Job.

7. Object Definition Languages (ODLs)

558 This section provides information on several commonly used ODLs with either existing 559 (registered) or suggested MIME media types.

560 **7.1 Additive Manufacturing Format (AMF)**

561 AMF [ISO52915] is a relatively new format that was designed as a replacement for the 562 Standard Tessellation Language (STL). Its use has been hampered by the lack of a freely-563 available specification, but has several advantages over STL including:

- 564 1. Shared vertices which eliminates holes and other breaks in the surface geometry of objects,
- 566 2. Specification of multiple materials in a single file,
- 567 3. Curved surfaces can be specified, and
- 568 4. Coordinates use explicit units for proper output dimensions.
- 569 The suggested (but not registered) MIME media type is 'application/amf'.

570 **7.2 Standard Tessellation Language (STL)**

571 STL [STLFORMAT] is widely supported by existing client software. The registered MIME 572 media type is 'application/sla'.

573 **7.3 G-Code**

574 The G-code [RS274] format has long been a common low-level format used by 3D 575 printers, with higher level formats being processed on the Client to produce G-code. The 576 suggested (but not registered) MIME media type is 'application/g-code'.

577 **7.4 S3G Protocol and X3G File Format**

578 The S3G protocol [S3G] defines a simple network protocol for communicating with a 3D 579 printer as well as a low-level file format, typically using a "x3g" extension, that provides a 580 serialization of extrusion commands similar to G-code. The suggested (but not registered) 581 MIME media type is 'application/vnd.makerbot-x3g'.

583 8. Internationalization Considerations

584 For interoperability and basic support for multiple languages, conforming implementations 585 MUST support:

- 586 5. The Universal Character Set (UCS) Transformation Format -- 8 bit (UTF-8) 587 [STD63] encoding of Unicode [UNICODE] [ISO10646]; and
- 588
 6. The Unicode Format for Network Interchange [RFC5198] which requires
 589
 589
 590
 590
 591
 592
 593
 594
 594
 595
 596
 596
 597
 598
 598
 598
 599
 599
 599
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590
 590

591 Unicode NFC is defined as the result of performing Canonical Decomposition (into base 592 characters and combining marks) followed by Canonical Composition (into canonical 593 composed characters wherever Unicode has assigned them).

594 WARNING – Performing normalization on UTF-8 strings received from IPP Clients and 595 subsequently storing the results (e.g., in IPP Job objects) could cause false negatives in 596 IPP Client searches and failed access (e.g., to IPP Printers with percent-encoded UTF-8 597 URIs now 'hidden').

598 **9. Security Considerations**

599 In addition to the security considerations described in the IPP/1.1: Model and Semantics 600 [RFC2911], the following sub-sections describe issues that are unique to 3D printing.

[Editor's note: the rest is TBD but will include explosions, fires, and other physical risks that
 have been documented in the news and various documents and studies]

604 **10. References**

605 606	[ISO10646]	"Information technology Universal Coded Character Set (UCS)", ISO/IEC 10646:2011
607 608	[ISO52915]	"Standard Specification for Additive Manufacturing File Format (AMF) Version 1.1", ISO/ASTM 52915, 2013
609 610 611 612	[PWG5100.12]	R. Bergman, H. Lewis, I. McDonald, M. Sweet, "IPP/2.0 Second Edition", PWG 5100.12-2011, February 2011, http://www.pwg.org/pub/pwg/candidates/cs-ipp20-2011MMDD- 5100.12.pdf
613 614 615	[PWG5100.14]	M. Sweet, I. McDonald, A. Mitchell, J. Hutchings, "IPP Everywhere", PWG 5100.14, January 2013, http://ftp.pwg.org/pub/pwg/candidates/cs-ippeve10-20130128.pdf
616 617 618	[RFC2911]	T. Hastings, R. Herriot, R. deBry, S. Isaacson, P. Powell, "Internet Printing Protocol/1.1: Model and Semantics", RFC 2911, September 2000, http://www.ietf.org/rfc/rfc2911.txt
619 620	[RFC3805]	R. Bergman, H. Lewis, I. McDonald, "Printer MIB v2", RFC 3805, June 2004, http://www.ietf.org/rfc/rfc3805.txt
621 622	[RFC5198]	J. Klensin, M. Padlipsky, "Unicode Format for Network Interchange", RFC 5198, March 2008, http://www.ietf.org/rfc/rfc5198.txt
623 624 625	[RS274D]	"Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines", EIA Standard RS-274-D, February 1979
626 627 628	[S3G]	Makerbot Industries, "S3G protocol (formerly RepRap Generation 3 Protocol Specification", https://github.com/makerbot/s3g/blob/master/doc/s3gProtocol.md
629 630	[STD63]	F. Yergeau, "UTF-8, a transformation format of ISO 10646", RFC 3629/STD 63, November 2003, http://www.ietf.org/rfc/rfc3629.txt
631	[STLFORMAT]	3D Systems, Inc., "SLC File Specification", 1994
632 633	[UAX15]	M. Davis, M. Duerst, "Unicode Normalization Forms", Unicode Standard Annex 15, March 2008, http://www.unicode.org/reports/tr15/
634 635 636	[UNICODE]	The Unicode Consortium, "The Unicode Standard, Version 6.2.0", ISBN 978-1-936213-07-8, September 2012, http://www.unicode.org/versions/Unicode6.2.0/

637 **11. Author's Address**

- 638 Primary author:
- 639 Michael Sweet
- 640 Apple Inc.
- 641 1 Infinite Loop
- 642 MS 111-HOMC
- 643 Cupertino, CA 95014
- 644 msweet@apple.com
- 645 The authors would also like to thank the following individuals for their contributions to this 646 standard:
- 647 TBD

648 **12. Change History**

649 **12.1 January 23, 2015**

650 Initial revision.